

HS009326513B2

(12) United States Patent

Haas et al.

A01N 43/82

A01N 43/84

A01N 43/88

A01N 59/16

(52) U.S. Cl.

(2006.01)

(2006.01)

(2006.01)

(2006.01)

 (10) Patent No.:

US 9,326,513 B2

(45) **Date of Patent:**

May 3, 2016

(54)			(2013.01); A01N 41/10 (2013.01); A01N 43/22
(75)	Inventors: Ulrich Joh	nannes Haas, Stein (CH);	(2013.01); A01N 43/36 (2013.01); A01N 43/38
()		Iermann, Stein (CH); Gabriel	(2013.01); A01N 43/52 (2013.01); A01N 43/54
		alliet, Stein (CH); Kurt Nebel,	(2013.01); A01N 43/56 (2013.01); A01N
		; Long Lu, Shanghai (CN);	<i>43/653</i> (2013.01); <i>A01N 43/80</i> (2013.01);
			A01N 43/82 (2013.01); A01N 43/84 (2013.01);
		Shanghai (CN); Jianzhong	A01N 43/88 (2013.01); A01N 47/40 (2013.01);
		nghai (CN); Thomas James	A01N 47/42 (2013.01); A01N 53/00 (2013.01);
		Stein (CH); Renaud	A01N 55/00 (2013.01); A01N 57/20 (2013.01);
		ies, Stein (CH); Werner	A01N 59/16 (2013.01); A01N 59/20 (2013.01);
		Stein (CH); Olivier Jacob,	C07D 213/74 (2013.01); C07F 7/0812
	Stein (CH)		(2013.01); Y02P 60/218 (2015.11)
(73)		Participations AG, Basel	(58) Field of Classification Search
	(CH)		CPC A01N 43/40; A01N 35/06; A01N 37/10;
(*)	Notice: Subject to	any disclaimer, the term of this	A01N 37/18; A01N 41/10; A01N 43/22;
	patent is e	extended or adjusted under 35	A01N 43/36; A01N 43/38; A01N 43/52;
	Ū.S.C. 154	l(b) by 236 days.	A01N 43/54; A01N 43/56; A01N 43/653;
(21)	Appl. No.: 14/36	2.709	A01N 43/80; A01N 43/82; A01N 43/84;
(22)	* *	9, 2012	A01N 43/88; A01N 47/40; A01N 47/42;
(22)	TOT Flicu. Apr.	, 2012	A01N 53/00; A01N 55/00; A01N 57/20;
(86)	PCT No.: PCT/	CN2012/073665	A01N 59/16; A01N 59/20; C07D 213/74;
(00)			C07F 7/0812
	§ 371 (c)(1),		See application file for complete search history.
	(2), (4) Date: Jun. 4	4, 2014	
(87)	PCT Pub. No.: WO2	012/146125	(56) References Cited
(01)			U.S. PATENT DOCUMENTS
(= =)	PCT Pub. Date: Nov. 1		U.S. TATENT DOCUMENTS
(65)	Prior P	ublication Data	2007/0155802 A1* 7/2007 Labourdette A01N 37/52
	US 2014/0335201 A1	Nov. 13, 2014	514/355
(30)	Foreign Appl	lication Priority Data	FOREIGN PATENT DOCUMENTS
		•	FOREIGN PATENT DOCUMENTS
A_1	or. 26, 2011 (EP)	11163731	WO 2008/101682 8/2008
A ₁ De	or. 26, 2011 (EP) oc. 14, 2011 (WO)	•	WO 2008/101682 8/2008 WO WO2008101682 A2 * 8/2008 C07D 213/16
A_1	or. 26, 2011 (EP) cc. 14, 2011 (WO) Int. Cl.	11163731 PCT/CN2011/084016	WO 2008/101682 8/2008 WO WO2008101682 A2 * 8/2008
A ₁ De	or. 26, 2011 (EP) c. 14, 2011 (WO) Int. Cl. A01N 43/40		WO 2008/101682 8/2008 WO WO2008101682 A2 * 8/2008
A ₁ De	or. 26, 2011 (EP) c. 14, 2011 (WO) Int. Cl. A01N 43/40 A01N 35/06		WO 2008/101682 8/2008 WO WO2008101682 A2 * 8/2008
A ₁ De	or. 26, 2011 (EP) oc. 14, 2011 (WO) Int. Cl. A01N 43/40 A01N 35/06 A01N 37/10		WO 2008/101682 8/2008 WO WO2008101682 A2 * 8/2008
A ₁ De	or. 26, 2011 (EP) oc. 14, 2011 (WO) Int. Cl. A01N 43/40 A01N 35/06 A01N 37/10 A01N 37/18		WO 2008/101682 8/2008 WO WO2008101682 A2 * 8/2008
A ₁ De	or. 26, 2011 (EP) cc. 14, 2011 (WO) Int. Cl. A01N 43/40 A01N 35/06 A01N 37/10 A01N 37/18 A01N 41/10		WO 2008/101682 8/2008 WO WO2008101682 A2 * 8/2008
A ₁ De	or. 26, 2011 (EP) or. 14, 2011 (WO) Int. Cl. A01N 43/40 A01N 35/06 A01N 37/10 A01N 37/18 A01N 41/10 A01N 43/22		WO 2008/101682 8/2008 WO WO2008101682 A2 * 8/2008
A ₁ De	or. 26, 2011 (EP) cc. 14, 2011 (WO) Int. Cl. A01N 43/40 A01N 35/06 A01N 37/10 A01N 37/18 A01N 41/10 A01N 43/22 C07D 213/74		WO 2008/101682 8/2008 WO WO2008101682 A2 * 8/2008
A ₁ De	or. 26, 2011 (EP) cc. 14, 2011 (WO) Int. Cl. A01N 43/40 A01N 35/06 A01N 37/10 A01N 37/18 A01N 41/10 A01N 43/22 C07D 213/74 C07F 7/08		WO 2008/101682 8/2008 WO WO2008101682 A2 * 8/2008
A ₁ De	or. 26, 2011 (EP) cc. 14, 2011 (WO) Int. Cl. A01N 43/40 A01N 35/06 A01N 37/10 A01N 37/18 A01N 41/10 A01N 43/22 C07D 213/74 C07F 7/08 A01N 59/20		WO 2008/101682 8/2008 WO WO2008101682 A2 * 8/2008
A ₁ De	or. 26, 2011 (EP) cc. 14, 2011 (WO) Int. Cl. A01N 43/40 A01N 35/06 A01N 37/10 A01N 37/18 A01N 41/10 A01N 43/22 C07D 213/74 C07F 7/08 A01N 59/20 A01N 57/20	(2006.01) (2006.01) (2006.01) (2006.01) (2006.01) (2006.01) (2006.01) (2006.01) (2006.01) (2006.01) (2006.01) (2006.01) (2006.01) (2006.01) (2006.01)	WO 2008/101682 8/2008 WO WO2008101682 A2 * 8/2008
A ₁ De	or. 26, 2011 (EP) cc. 14, 2011 (WO) Int. Cl. A01N 43/40 A01N 35/06 A01N 37/10 A01N 37/18 A01N 41/10 A01N 43/22 C07D 213/74 C07F 7/08 A01N 59/20 A01N 57/20 A01N 55/00		WO 2008/101682 8/2008 WO WO2008101682 A2 * 8/2008
A ₁ De	or. 26, 2011 (EP) cc. 14, 2011 (WO) Int. Cl. A01N 43/40 A01N 35/06 A01N 37/10 A01N 37/18 A01N 41/10 A01N 43/22 C07D 213/74 C07F 7/08 A01N 59/20 A01N 55/00 A01N 53/00		WO 2008/101682 8/2008 WO WO2008101682 A2 * 8/2008
A ₁ De	or. 26, 2011 (EP) cc. 14, 2011 (WO) Int. Cl. A01N 43/40 A01N 35/06 A01N 37/10 A01N 37/18 A01N 41/10 A01N 43/22 C07D 213/74 C07F 7/08 A01N 59/20 A01N 55/00 A01N 53/00 A01N 47/40		WO 2008/101682 8/2008 WO WO2008101682 A2 * 8/2008
A ₁ De	or. 26, 2011 (EP) cc. 14, 2011 (WO) Int. Cl. A01N 43/40 A01N 35/06 A01N 37/10 A01N 37/18 A01N 41/10 A01N 43/22 C07D 213/74 C07F 7/08 A01N 59/20 A01N 55/00 A01N 55/00 A01N 47/40 A01N 47/40		WO 2008/101682 8/2008 WO WO2008101682 A2 * 8/2008
A ₁ De	or. 26, 2011 (EP) cc. 14, 2011 (WO) Int. Cl. A01N 43/40 A01N 35/06 A01N 37/10 A01N 41/10 A01N 43/22 C07D 213/74 C07F 7/08 A01N 59/20 A01N 55/00 A01N 55/00 A01N 47/40 A01N 47/42 A01N 43/36		WO 2008/101682 8/2008 WO WO2008101682 A2 * 8/2008
A ₁ De	or. 26, 2011 (EP) cc. 14, 2011 (WO) Int. Cl. A01N 43/40 A01N 35/06 A01N 37/10 A01N 41/10 A01N 43/22 C07D 213/74 C07F 7/08 A01N 59/20 A01N 55/00 A01N 55/00 A01N 47/40 A01N 47/42 A01N 43/36 A01N 43/38		WO 2008/101682 8/2008 WO WO2008101682 A2 * 8/2008
A ₁ De	or. 26, 2011 (EP) cc. 14, 2011 (WO) Int. Cl. A01N 43/40 A01N 35/06 A01N 37/10 A01N 37/18 A01N 41/10 A01N 43/22 C07D 213/74 C07F 7/08 A01N 55/00 A01N 55/00 A01N 55/00 A01N 47/40 A01N 47/42 A01N 43/36 A01N 43/38 A01N 43/52		WO 2008/101682 8/2008 WO WO2008101682 A2 * 8/2008
A ₁ De	or. 26, 2011 (EP) cc. 14, 2011 (WO) Int. Cl. A01N 43/40 A01N 35/06 A01N 37/10 A01N 37/18 A01N 41/10 A01N 43/22 C07D 213/74 C07F 7/08 A01N 55/20 A01N 55/20 A01N 55/00 A01N 47/40 A01N 47/42 A01N 43/36 A01N 43/38 A01N 43/52 A01N 43/54		WO 2008/101682 8/2008 WO WO2008101682 A2 * 8/2008
A ₁ De	or. 26, 2011 (EP) cc. 14, 2011 (WO) Int. Cl. A01N 43/40 A01N 35/06 A01N 37/10 A01N 37/18 A01N 41/10 A01N 43/22 C07D 213/74 C07F 7/08 A01N 55/00 A01N 55/00 A01N 55/00 A01N 47/40 A01N 47/42 A01N 43/36 A01N 43/36 A01N 43/38 A01N 43/54 A01N 43/56		WO WO2008/101682 8/2008
A ₁ De	or. 26, 2011 (EP) cc. 14, 2011 (WO) Int. Cl. A01N 43/40 A01N 35/06 A01N 37/10 A01N 37/18 A01N 41/10 A01N 43/22 C07D 213/74 C07F 7/08 A01N 55/20 A01N 55/20 A01N 55/00 A01N 47/40 A01N 47/42 A01N 43/36 A01N 43/38 A01N 43/52 A01N 43/54		WO 2008/101682 8/2008 WO WO2008101682 A2 * 8/2008

FUNGICIDAL COMPOSITIONS

RELATED APPLICATION INFORMATION

This application is a 371 of International Application No. 5 PCT/CN2012/073665, filed 9 Apr. 2012, which claims priority to International Application No. PCT/CN2011/084016, filed 14 Dec. 2011, the contents of which are incorporated herein by reference.

The present invention relates to novel fungicidal compositions which comprise fungicidally active pyridylamidine compounds for the treatment of phytopathogenic diseases of useful plants, especially phytopathogenic fungi, and to a method of controlling phytopathogenic diseases on useful

Certain phenylamidine derivatives are described in WO2008/101682 as microbicidally active ingredients in pesticides.

The present invention provides a composition comprising a combination of components A) and B), wherein component 20 C_{12} alkyl)-, $(R_{51})(R_{52})(R_{53})$ Si— $(C_3$ - C_8 cycloalkyl)-, $(R_{54}O)$ A) is a compound of formula (I)

$$R_5$$
 R_4
 R_5
 R_7
 R_4
 R_1
 R_1

wherein

 R_1 and R_2 are each independently selected from hydrogen, C_1 - C_4 alkyl, C_3 - C_4 alkenyl, C_3 - C_4 alkynyl, (R_{10}) carbonyl and (R₁₀)oxycarbonyl;

or R₁ and R₂ together with the nitrogen atom to which they 35 are attached form a 5- or 6 membered cyclic group which may be saturated or unsaturated and may contain a further heteroatom selected from S or O;

R₃ represents hydrogen, halogen, cyano, nitro, mercapto, $-C(=S)NH_2$, $-SF_5$, C_1-C_6 alkyl, C_1-C_6 40 haloalkyl, C₂-C₆ alkenyl, C₂-C₆ haloalkenyl, C₂-C₆ alkynyl, $\rm C_2\text{-}C_6$ haloalkynyl, $\rm C_1\text{-}C_6$ alkoxy, $\rm C_1\text{-}C_6$ haloalkoxy, $\rm C_3\text{-}C_6$ cycloalkyl, amino, C₁-C₂ alkylamino, di(C₁-C₆ alkyl)amino, a 5-membered heterocycle containing 1-4 nitrogen atoms, piperidino, morpholino, thiomorpholino, formyl, hydroxy- 45 carbonyl, C2-C7 alkoxycarbonyl, C2-C7 haloalkoxycarbonyl, C₄-C₇ alkenyloxycarbonyl, C₄-C₇ haloalkenyloxycarbonyl, C2-C7 alkylcarbonyl, C2-C7 haloalkylcarbonyl, C1-C6 alkylthio, C₁-C₆ alkylsulfinyl, C₁-C₆ alkylsulfonyl, C₁-C₆ $haloalkylthio, C_1\text{-}C_6\,haloalkylsulfinyl, C_1\text{-}C_6\,haloalkylsulfo-50$ nyl, C₁-C₆ hydroxyalkyl, phenyl or benzyl wherein the phenyl and benzyl are optionally substituted by one or more groups independently selected from the group consisting of halogen, cyano, hydroxy, mercapto, amino, C₁-C₆ alkyl, C₁-C₆ haloalkyl, C₁-C₆ alkoxy, C₁-C₆ haloalkoxy, C₁-C₆ 55 alkyl
thio, $\mathrm{C_1\text{-}C_6}$ alkylsulfinyl and $\mathrm{C_1\text{-}C_6}$ alkylsulfonyl;

R₄ represents hydrogen, halogen, cyano, amino, C_1 - C_4 alkyl, C_1 - C_4 haloalkyl, C_3 - C_6 cycloalkyl, C_2 - C_4 alkenyl, C2-C4 alkynyl, C1-C4 alkoxy, C1-C4 haloalkoxy, C1-C4 alkylthio, C₁-C₄ alkylsulfinyl, C₁-C₄ alkylsulfonyl, methy- 60 lamino and dimethylamino;

hydrogen, C_1 - C_{12} alkyl, C₃-C₁₂alkenyl, C_3 - C_{12} alkynyl, C_1 - C_{12} alkylsulfonyl, C_2 - C_{12} alkenylsulfonyl, phenylsulfonyl or benzylsulfonyl, or is C_1 - C_{12} alkyl, C_2 - C_{12} alkenyl, C_2 - C_{12} alkynyl, C_1 - C_{12} alkylsulfonyl, 65 C₂-C₁₂alkenylsulfonyl, phenylsulfonyl or benzylsulfonyl mono- to polysubstituted by substituents independently

2

selected from the group consisting of halogen, cyano, nitro, hydroxy, mercapto, azido, formyl, C2-C7alkylcarbonyl, C₂-C₇haloalkylcarbonyl, C₁-C₆alkyl, C₁-C₆haloalkyl, C_1 - C_6 alkoxy, C_1 - C_6 haloalkoxy, C₁-C₆alkylthio, C₁-C₆alkylsulfinyl and C₁-C₆alkylsulfonyl; or

R₅ is formyl, C₂-C₁₂ alkylcarbonyl, C₃-C₁₂ alkenylcarbonyl, C_3 - C_{12} alkynylcarbonyl, C_4 - C_{12} cycloalkylcarbonyl, benzylcarbonyl, phenylcarbonyl, C_2 - C_{12} alkoxycarbonyl, C_4 - C_{12} alkenyloxycarbonyl, C_4 - C_{12} alkynyloxycarbonyl, C₄-C₁₂ cycloalkoxycarbonyl, benzyloxycarbonyl or phenoxycarbonyl, or is C_2 - C_{12} alkylcarbonyl, C_3 - C_{12} alkenylcarbonyl, C₃-C₁₂ alkynylcarbonyl, C₄-C₁₂ cycloalkylcarbonyl, benzylcarbonyl, phenylcarbonyl, C_2 - C_{12} alkoxycarbonyl, C_4 - C_{12} alkenyloxycarbonyl, C_4 - C_{12} alkenyloxycarbonyl, C₄-C₁₂ cycloalkoxycarbonyl, benzyloxycarbonyl or phenoxycarbonyl mono- to polysubstituted by substituents independently selected from the group consisting of halogen, cyano, C₁-C₆ alkyl, C₁-C₆ haloalkyl and C₁-C₆ alkoxy; or

 R_5 is $(R_{51})(R_{52})(R_{53})Si$, $(R_{51})(R_{52})(R_{53})Si$ — $(C_1$ (R₅₅O)(R₅₆O)Si—, $(R_{54}O)(R_{55}O)(R_{56}O)Si-(C_1 C_{12}$ alkyl)- or $(R_{54}O)(R_{55}O)(R_{56}O)Si-(C_3-C_8cycloalkyl)-;$

 $\rm R_5$ is $\rm C_1\text{-}C_6$ alkyl-B—C $_1\text{-}C_{12}$ alkyl-, $\rm C_2\text{-}C_6$ alkenyl-B—C $_1\text{-}$ C_2 - C_6 alkynyl-B— C_1 - C_{12} alkyl-, C₃-C₈cycloalkyl-B—C₁-C₁₂alkyl-, benzyl-B—C₁- C_{12} alkyl-, phenyl-B— C_1 - C_{12} alkyl-, C_1 - C_6 alkyl-B— C_2 -C₁₂alkenyl-, C₂-C₆alkenyl-B—C₂-C₁₂alkenyl-, C_2 - C_6 alkynyl, C_2 - C_{12} alkenyl-, C_3 - C_8 cycloalkyl-N— C_2 -30 C₁₂alkenyl-, benzyl-B—C₂-C₁₂alkenyl-, phenyl-B—C₂ C_{12} alkenyl-, C_1 - C_6 alkyl-B— C_2 - C_{12} alkynyl-, C_2 - C_6 alkenyl- C_2 - C_6 alkynyl-B— C_2 - C_{12} alkynyl-, $B-C_2-C_{12}$ alkynyl-, benzyl-B—C₂- C_3 - C_8 cycloalkyl-B— C_2 - C_{12} alkynyl-, C_{12} alkynyl-, phenyl-B— C_2 - C_{12} alkynyl-, C_1 - C_6 alkyl-B-C₂-C₆alkenyl-B—C₃-C₈cycloalkyl-, C₂-C₆alkynyl-B—C₃-C₈cycloalkyl-, C₃-C₈cycloalkyl-B- C_3 - C_8 cycloalkyl-, benzyl-B— C_3 - C_{12} cycloalkyl- or phenyl-B-C₃-C₁₂cycloalkyl-, wherein the group B is selected from SO_2 — or — SO_2 — $N(R_{62})$ —; or R_5 is C_1 - C_6 alkyl-B— C_1 - C_{12} alkyl-, C_2 - C_6 alkenyl-B— C_1 -

C₁₂alkyl-, C_2 - C_6 alkynyl-B— C_1 - C_{12} alkyl-, C_3 - C_8 cycloalkyl-B— C_1 - C_{12} alkyl-, benzyl-B—C₁-C₂-C₆alkynyl-B—C₂-C₁₂alkenyl-, C₃-C₈cycloalkyl-B—C₂-C₁₂alkenyl-, benzyl-B—C₂-C₁₂alkenyl-, phenyl-B—C C₁₂alkenyl-, C₁-C₆alkyl-B—C₂-C₁₂alkynyl-, C₂-C₆alkenyl- $B-C_2-C_{12}$ alkynyl-, C_2 - C_6 alkynyl-B— C_2 - C_{12} alkynyl-, $\begin{array}{lll} C_3\text{-}C_8\text{cycloalkyl-}B\text{-}C_2\text{-}C_{12}\text{alkynyl-}, & \text{benzyl-}B\text{-}C\\ C_{12}\text{alkynyl-}, & \text{phenyl-}B\text{-}C_2\text{-}C_{12}\text{alkynyl-}, & C_1\text{-}C_6\text{alkyl-}B\text{-}C\\ \end{array}$ benzyl-B—C₂-C₂-C₆alkenyl-B—C₃-C₈cycloalkyl-, C₃-C₈cycloalkyl-, C₂-C₆alkynyl-B—C₃-C₈cycloalkyl-, C₃-C₈cycloalkyl-B C₃-C₈cycloalkyl-, benzyl-B—C₃-C₁₂cycloalkyl-, phenyl-B-C₃-C₁₂cycloalkyl-, all of which, in turn, are mono- to poly-substituted by substituents independently selected from the group consisting of halogen, cyano, hydroxy, mercapto, $\begin{array}{l} C_1\text{-}C_6 \text{ haloalkyl}, C_1\text{-}C_6 \text{ alkoxy, formyl}, C_2\text{-}C_6 \text{ alkylcarbonyl}, \\ C_1\text{-}C_6 \text{ alkylthio}, C_1\text{-}C_6 \text{ alkylsulfinyl and } C_1\text{-}C_6 \text{ alkylsulfonyl}; \end{array}$

 R_5 is A-, A-(C₁-C₆alkyl)-, A-O—(C₁-C₆alkyl)-, A-(C₃-C₆alkenyl)-, A-O—(C₄-C₆alkenyl)-, A-(C₃-C₆-alkynyl)-, A-O—(C₄-C₆alkynyl)-, A-(C₃-C₈cycloalkyl)- or A-O—(C₃-C₈cycloalkyl)-;

wherein A is a three- to ten-membered monocyclic or fused bicyclic ring system which can be aromatic, partially saturated or fully saturated and can contain 1 to 4 hetero atoms selected from the group consisting of nitrogen, oxygen and sulphur, it not being possible for each ring system to contain 5—O—O—, —S—S— and —O—S— fragments, and it being possible for the three- to ten-membered ring system to be itself mono- or polysubstituted

A1) by substituents independently selected from the group consisting of

A3) by substituents independently selected from the group consisting of

formyl, C_2 - C_7 alkylcarbonyl, C_2 - C_7 haloalkylcarbonyl, C_3 - C_7 alkenylcarbonyl, C_3 - C_7 haloalkenylcarbonyl, C_4 - C_9 35 cycloalkylcarbonyl, C_4 - C_9 halocycloalkylcarbonyl, C_2 - C_7 alkoxycarbonyl, C_2 - C_7 haloalkoxycarbonyl, C_3 - C_7 alkenyloxycarbonyl, C_3 - C_7 alkynyloxycarbonyl, C_4 - C_9 cycloalkoxycarbonyl, C_2 - C_7 alkylthiocarbonyl and benzyloxycarbonyl, and benzyloxycarbonyl mono- to polysubstituted by substituents independently selected from the group consisting of halogen, cyano, hydroxy, C_1 - C_6 alkyl, C_1 - C_6 haloalkyl and C_1 - C_6 alkoxy; or

A4) by substituents independently selected from the group consisting of hydroxyl, C_1 - C_4 alkyl, C_2 - C_4 alkenyl, C_2 - C_4 45 alkynyl, C_1 - C_4 alkoxy, halogen, C_1 - C_4 haloalkyl, C_2 - C_4 haloalkenyl, cyano, benzyl, phenyl, =C($R^{36'}$)₂, =N—OH, =N—O— C_1 - C_4 -alkyl, =N—O— C_3 - C_4 alkenyl, =N—O— C_3 - C_4 alkenyl, =N—O— C_3 - C_4 haloalkyl, =N—O—benzyl and 50 =N—O-phenyl, wherein the =N—O-benzyl and =N—O-phenyl are optionally substituted by one or more group selected from the group consisting of halogen, methyl, halomethyl; or

 R_5 is $-N = C(R_8)(R_9)$; or

 $\rm R_5$ is a $\rm C_8\text{-}C_{11}$ spirobicyclic system containing 0, 1 or 2 O or N atoms, wherein there are no adjacent O atoms, which is optionally substituted by one or more groups independently selected from halogen, CN, NO₂, OH, SH, CHO, COOH, tri(C₁-C₆-alkyl)silyl, C₁-C₆ alkyl, —CH(CH₃)—CH₂—60 CH₂—CH₃, —CH—CH(CH₃)—CH₂—CH₃, —CH—CH(CH₃)—CH₂—CH(CH₃), —CH (CH₃)—CH(CH₃), CH (CH₃)—CH₂—Ch(CH₃), CH (CH₃)—CH₂—Ch(CH₃), Ch₂-C₆ haloalkyl, C₃-C₆ cycloalkyl, C₃-C₆ halocycloalkyl, C₂-C₆ alkenyl, C₂-C₆ haloalkenyl, C₁-C₆ alkoxy, C₁-C₆ haloalkoxy, C₂-C₇-alkylcarbonyl, 65 C₂-C₇-alkoxycarbonyl, C₄-C₇-alkylcarbonyl, C₄-C₇-alkynyloxycarbonyl, C₁-C₆ alkylthio, C₁-C₆ alkylsulfinyl,

4

 C_1 - C_6 alkylsulfonyl, \Longrightarrow O, \Longrightarrow C(\Longrightarrow O)NH₂, \Longrightarrow C(\Longrightarrow O)NH (CH₃), \Longrightarrow C(\Longrightarrow C)NH₂;

R₆ is selected from hydrogen and SH;

 R_7 is hydrogen, halogen or C_1 - C_4 alkyl;

 R_8 and R_9 , independently from each other, are hydrogen, halogen, cyano, C_1 - C_{12} alkyl, C_2 - C_{12} alkenyl, C_2 - C_{12} alkynyl, C_1 - C_{12} alkoxy, formyl, C_2 - C_{12} alkylcarbonyl, C_3 - C_{12} alkenylcarbonyl, carboxy, C_2 - C_{12} alkoxycarbonyl and C_4 - C_{12} alkenyloxycarbonyl, or C_1 - C_{12} alkyl, C_2 - C_{12} alkenyl, C_2 - C_{12} alkoxy, C_2 - C_{12} alkylcarbonyl, C_3 - C_{12} alkenylcarbonyl, C_3 - C_{12} alkenylcarbonyl, C_2 - C_{12} alkoxycarbonyl and C_4 - C_{12} alkenyloxycarbonyl mono- to polysubstituted by substituents independently selected from the group consisting of halogen, cyano, nitro, hydroxy, mercapto, C_1 - C_6 alkyl, C_1 - C_6 haloalkyl, C_1 - C_6 alkylsulfinyl and C_1 - C_6 haloalkoxy, C_1 - C_6 alkylsulfinyl; or R_8 and R_9 together from a C_2 - C_8 alkylene bridge which may optionally be mono- to polysubstituted by substituents independently selected from the group consisting of halogen, cyano, C_1 - C_6 alkyl and C_1 - C_6 haloalkyl; or R_8 and R_9 , independently from each other, are the groups A-, A-O— or A-(C_1 - C_6 alkyl)-;

 R_{10} is H, C_1 - C_4 alkyl, C_2 - C_4 alkenyl or C_1 - C_4 haloalkyl; R_{13} is hydrogen, C_1 - C_6 alkyl, C_1 - C_6 haloalkyl, C_3 - C_6 alkenyl, C_3 - C_6 haloalkenyl, C_3 - C_6 alkynyl, C_3 - C_8 cycloalkyl, C_3 - C_8 halocycloalkyl, phenyl and benzyl, or is phenyl and benzyl mono- to polysubstituted by halogen, cyano, hydroxy, C_1 - C_6 alkyl, C_1 - C_6 haloalkyl or C_1 - C_6 alkoxy;

 R_{14} and R_{15} , independently of each other, are $C_1\text{-}C_6$ alkyl, $C_3\text{-}C_8$ cycloalkyl, $C_1\text{-}C_6$ haloalkyl, $C_3\text{-}C_8$ halocycloalkyl, $C_2\text{-}C_6$ alkenyl, $C_2\text{-}C_6$ haloalkenyl, $C_2\text{-}C_6$ alkynyl, benzyl or phenyl, or benzyl or phenyl independently of each other, substituted by substituents selected from the group consisting of halogen, cyano, hydroxy, $C_1\text{-}C_6$ alkyl, $C_1\text{-}C_6$ haloalkyl and $C_1\text{-}C_6$ alkoxy;

 $R_{51},\,R_{52},\,R_{63},\,$ independently of each other, are halogen, cyano, $C_1\text{-}C_6$ alkyl, $C_2\text{-}C_6$ alkenyl, $C_3\text{-}C_8$ cycloalkelyl, $C_5\text{-}C_8$ cycloalkenyl, $C_2\text{-}C_6$ alkynyl, $C_1\text{-}C_6$ alkoxy, benzyl or phenyl; $R_{54},\,R_{55},\,R_{66},\,$ independently of each other, are $C_1\text{-}C_6$ alkyl, $C_3\text{-}C_6$ alkenyl, $C_3\text{-}C_6$ alkynyl, benzyl or phenyl;

 R_{57} and R_{68} , independently of each other, are hydrogen, $C_1\text{-}C_6$ alkyl, $C_1\text{-}C_6$ haloalkyl, $C_3\text{-}C_6$ alkenyl, $C_3\text{-}C_6$ haloalkenyl, $C_3\text{-}C_6$ alkynyl, $C_3\text{-}C_8$ cycloalkyl, $C_3\text{-}C_8$ halocycloalkyl, phenyl or benzyl, where phenyl or benzyl for their part may be mono- to polysubstituted on the phenyl ring by substituents independently selected from the group consisting of halogen, cyano, hydroxy, $C_1\text{-}C_6$ alkyl, $C_1\text{-}C_6$ haloalkyl and $C_1\text{-}C_6$ alkoxy, or R_{57} and R_{58} together with their interconnecting nitrogen atom are aziridino, azetidino, pyrazolino, pyrazolidino, pyrrolino, pyrrolidino, imidazolino, imidazolidino, triazolino, tetrazolino, piperazino, piperidino, morpholino, thiomorpholino, each of which, in turn, may be mono- or polysubstituted by substituents selected from the group consisting of methyl, halogen, cyano;

 R_{59} is hydrogen, C_1 - C_6 alkyl, C_1 - C_6 haloalkyl, C_3 - C_6 alkenyl, C_3 - C_6 haloalkenyl, C_3 - C_6 alkynyl, C_3 - C_8 cycloalkyl, C_3 - C_8 halocycloalkyl, benzyl and phenyl, and benzyl and phenyl mono- to polysubstituted by halogen, cyano, hydroxy, C_1 - C_6 alkyl, C_1 - C_6 haloalkyl or C_1 - C_6 alkoxy;

 R_{60} is hydrogen, C_1 - C_6 alkyl, C_3 - C_8 cycloalkyl, C_1 - C_6 haloalkyl, C_3 - C_8 halocycloalkyl, C_2 - C_6 alkenyl, C_2 - C_6 haloalkenyl, C_2 - C_6 alkynyl, benzyl or phenyl, or benzyl or phenyl mono- to polysubstituted by substituents independently selected from the group consisting of halogen, cyano, hydroxy, C_1 - C_6 alkyl, C_1 - C_6 haloalkyl and C_1 - C_6 alkoxy;

 R_{62} is hydrogen, C_1 - C_6 alkyl, C_3 - C_8 cycloalkyl, C_1 - C_6 haloalkyl, C_3 - C_8 halocycloalkyl, C_3 - C_6 alkenyl, C_3 - C_6 alky-

nyl, benzyl or phenyl, or benzyl or phenyl mono- to polysubstituted by substituents independently selected from the group consisting of halogen, cyano, hydroxy, C_1 - C_6 alkyl, C_1 - C_6 haloalkyl and C_1 - C_6 alkoxy;

each $R^{36'}$ is independently selected from hydrogen, halo- 5 gen and C_1 - C_4 alkyl;

and agronomically acceptable salts/metallic complexes/metalloidic complexes/isomers/structural isomers/stereo-isomers/diastereoisomers/enantiomers/tautomers/N-oxides of those compounds;

and

component B) is a strobilurin fungicide, a sterol biosynthesis inhibitor fungicide, a triazole fungicide, or a pro-triazole fungicide, or a DMI fungicide, or a SDHI fungicide, or a compound selected from the group consisting of Chlorotha- 15 lonil, Fludioxonil, Cyprodinil, Mandipropamid, Fluazinam, Procymedone, Carbendazim, Abamectin, Clothianidin, Emamectin benzoate, Imidacloprid, Tefluthrin, Mefenoxam, Orocymedone, Thiamethoxam, Lambda-cyhalothrin, Gammacyhalothrin. Profenofos. Lufenuron. Diflubenzuron, 20 Cypermethrin, Novaluron, Bifenthrin, Methomyl, Chlopyrifos, Methamidophos, Endosulfan, Betacyfluthrin, Triflumuron, Teflubenzuron, SulcotrioneAcephat, Glyphosate, Glufosinate. Mesotrione. Bicyclopyrone, Tembotrione. Sulcotrione, Sulcotrione, Auxins, Trinexapac-ethyl, Pro- 25 hexadione-Ca, Paclobutrazol, Acibenzolar-S-methyl, Methyl-Jasmonate, Cis-Jasmone, Manganese, Cyflufenamid, Tebufloquin and Copper.

A further aspect of present invention provides a composition comprising a combination of components A) and B) in a 30 synergistically effective ratio between the component A) and component B).

A further aspect of the present invention provides a method of controlling phytopathogenic diseases on useful plants or on propagation material thereof, which comprises applying to 35 the useful plants, the locus thereof or propagation material thereof a combination of components A) and B) in as synergistically effective amount and ratio between the component A) and component B).

A further aspect of the present invention relates to novel 40 compounds according to formula (I).

A further aspect of the present invention relates to novel intermediates to provide compounds according to formula (I).

Preferably, component B is a strobilurin fungicide, a sterol biosynthesis inhibitor fungicide, a triazole fungicide, a pro- 45 triazole fungicide, a DMI fungicide, a SDHI fungicide, or is a compound selected from Chlorothalonil, Fludioxonil, Cyprodinil, Mandipropamid, Mefenoxam, Orocymedone, Fluazinam, Procymedone, Carbendazim, Abamectin, Clothianidin, Emamectin benzoate, Imidacloprid, Tefluthrin, 50 Thiamethoxam, Lambda-cyhalothrin, Gamma-cyhalothrin, Profenofos, Lufenuron, Diflubenzuron, Cypermethrin, Novaluron, Bifenthrin, Methomyl, Chlopyrifos, Methamidophos, Endosulfan, Betacyfluthrin, Triflumuron, Teflubenzuron, SulcotrioneAcephat, Glyphosate, Glufosinate, Mesotrione, 55 Bicyclopyrone, Tembotrione, Sulcotrione, Auxins, Trinexapac-ethyl, Prohexadione-Ca, Paclobutrazol, Acibenzolar-Smethyl, Methyl-Jasmonate, Cis-Jasmone, Manganese and

Preferably, component B is a strobilurin fungicide, a sterol 60 biosynthesis inhibitor fungicide, a triazole fungicide, a protriazole fungicide, a DMI fungicide, a SDHI fungicide, or is a compound selected from the group consisting of Chlorothalonil, Fludioxonil, Cyprodinil, Mandipropamid, Mefenoxam, Orocymedone, Fluazinam, Carbendazim, Thiamethoxam, 65 Glyphosate, 2,4-D, Trinexapac-ethyl, Prohexadione-Ca, Paclobutrazol and cis-Jasmone.

6

In one group of mixtures, component B is a strobilurin fungicide.

In another group of mixtures, component B is a Sterol biosynthesis inhibitor

In another group of mixtures, component B is a triazole fungicide or a protriazole compound.

In another group of mixtures, component B is a DMI fungicide.

In another group of mixtures, component B is a SDHI fungicide.

In another group of mixtures, component B is a compound of formula (III)

$$R^{71}$$
 OH

wherein R^{70'} is phenyl, which is unsubstituted or substituted with 1, 2 or 3 substituents selected from halogen, haloalkyl, haloalkoxy and cyano, and;

R^{71'} is phenyl, which is unsubstituted or substituted with 1, 2 or 3 substituents selected from halogen, haloalkyl, haloalkoxy and cyano.

Preferred compounds of formula (III) are (S)-[3-(4-Chloro-2-fluoro-phenyl)-5-(2,4-difluoro-phenyl)-isoxazol-4-yl]-pyridin-3-yl-methanol and 3-(4-Chloro-2-fluoro-phenyl)-5-(2,4-difluoro-phenyl)-isoxazol-4-yl]-pyridin-3-yl-methanol.

In another group of mixtures, component B is selected from the group consisting of Chlorothalonil, Fludioxonil, Cyprodinil, Mandipropamid, Fluazinam, Procymedone, Carbendazim, Abamectin, Clothianidin, Emamectin benzoate, Imidacloprid, Tefluthrin, Mefenoxam, Orocymedone, Thiamethoxam, Lambda-cyhalothrin, Gamma-cyhalothrin, Profenofos, Lufenuron, Diflubenzuron, Cypermethrin, Novaluron, Bifenthrin, Methomyl, Chlopyrifos, Methamidophos, Endosulfan, Betacyfluthrin, Triflumuron, Teflubenzuron, SulcotrioneAcephat, Glyphosate, Glufosinate, Mesotrione, Bicyclopyrone, Tembotrione, Sulcotrione, Auxins (e.g. 2.4-D MCPA), Trinexapac-ethyl, Prohexadione-Ca, Paclobutrazol, Acibenzolar-S-methyl, Methyl-Jasmonate, Cis-Jasmone, Manganese and Copper, preferably from the group consisting of Chlorothalonil, Fludioxonil, Cyprodinil, Fenpropidin, Mandipropamid, Mefenoxam, Orocymedone, Fluazinam, Procymedone, Carbendazim, Abamectin, Clothianidin, Emamectin benzoate, Imidacloprid, Tefluthrin, Thiamethoxam, Lambda-cyhalothrin, Gamma-cyhalothrin, Profenofos, Lufenuron, Diflubenzuron, Cypermethrin, Novaluron, Bifenthrin, Methomyl, Chlopyrifos, Methamidophos, Endosulfan, Betacyfluthrin, Triflumuron, Teflubenzuron, SulcotrioneAcephat, Glyphosate, Glufosinate, Mesotrione, Bicyclopyrone, Tembotrione, Sulcotrione, Auxins, Trinexapac-ethyl, Prohexadione-Ca, Paclobutrazol, Acibenzolar-Smethyl, Methyl-Jasmonate, Cis-Jasmone, Manganese and Copper, more preferably from the group consisting of Chlorothalonil, Fludioxonil, Cyprodinil, Fenpropidin, Mandipropamid, Mefenoxam, Orocymedone, Fluazinam, Carbendazim, Thiamethoxam, Glyphosate, 2,4-D, Trinexapac-ethyl, Prohexadione-Ca, Paclobutrazol and cis-Jasmone.

In a preferred embodiment the component B) is a compound selected from Chlorothalonil, Fludioxonil, Cyprodinil, Fenpropidin, Mandipropamid, Fenpropimorph, Fluazinam, Procymedone, Carbendazim, Abamectin, Clothianidin, Emamectin benzoate, Imidacloprid, Tefluthrin, Mefenoxam, Orocymedone, Thiamethoxam, Lambda-cyhalothrin, Gammacyhalothrin, Profenofos, Lufenuron, Diflubenzuron, Cypermethrin, Novaluron, Bifenthrin, Methomyl, Chlopyrifos, Methamidophos, Endosulfan, Betacyfluthrin, Triflumuron, Teflubenzuron, Acephat, Glyphosate, Glufosinate, Mesotrione, Bicyclopyrone, Tembotrione, Sulcotrione, 2,4-D, MCPA, Trinexapac-ethyl, Prohexadione-Ca, Paclobutrazol, Acibenzolar-S-methyl, Methyl-Jasmonate, Cis-Jasmone, Manganese, Copper, Coumoxystrobin, Dicloaminostrobin, Flufenoxystrobin, Pyrametostrobin, Pyraoxystrobin, Trifloxystrobin, Azoxystrobin, Pyraclostrobin, Picoxystrobin, Jiaxiangjunzhi, Enoxastrobin, Triclopyricarb, the compound of formula II, Cyproconazole, Difenoconazole, Metconazole, Propiconazole, Epoxiconazole, Tebuconazole, Flutriafol, Ipconazole, prothioconazole, (S)-[3-(4-Chloro-2-fluoro-20 phenyl)-5-(2,4-difluoro-phenyl)-isoxazol-4-yl]-pyridin-3yl-methanol, 3-(4-Chloro-2-fluoro-phenyl)-5-(2,4-difluorophenyl)-isoxazol-4-yl]-pyridin-3-yl-methanol,

Pyrisoxazole, 3-(Difluoromethyl)-N-methoxy-1-methyl-N-[1-methyl-2-(2,4,6-trichlorophenyl)ethyl]-1H-pyrazole-4-carboxamide, N-[9-(dichloromethylene)-1,2,3,4-tetrahydro-1,4-methanonaphthalen-5-yl]-3-(difluoromethyl)-1-methyl-1H-pyrazole-4-carboxamide, Isopyrazam, Sedaxane, Boscalid, Fluxapyroxad, Penthiopyrad, Penflufen, Bixafen and Fluopyram.

The term strobilurin fungicide is well known to the person skilled in the art, and includes, for example, Coumoxystrobin, Dicloaminostrobin, Flufenoxystrobin, Pyrametostrobin, Pyracoxystrobin, Trifloxystrobin, Azoxystrobin, Pyraclostrobin, Picoxystrobin, Jiaxiangjunzhi, Enoxastrobin, Triclopyricarb, Fluoxastrobin, Dimoxystrobin, Fenaminostrobin and the compound of formula (II). Preferred strobilurin fungicides are Azoxystrobin, Pyraclostrobin and Picoxystrobin. Even more preferred strobilurin fungicides are Azoxystrobin and Pyraclostrobin.

The term sterol biosynthesis inhibitor fungicide is well 55 known to the person skilled in the art, and includes, for example, Spiroxamine, Fenpropimorph, Tridemorph, Fenpropidin, Fenhexamid, Terbinafine, Naftifine

The term triazole fungicide is well known to the person skilled in the art, and includes, for example, Cyproconazole, 60 Difenoconazole, Metconazole, Propiconazole, Epoxiconazole, Tebuconazole, Flutriafol, Ipconazole and 1-(2-chlorophenyl)-2-(1-chlorocycloprop-1-yl)-3-(1,2,4-triazol-1-yl) propan-2-ol [CAS number 120983-64-4]. Preferred triazole fungicide compounds are Cyproconazole, Difenoconazole, 65 Metconazole and Tebuconazole. Even more preferred is Cyproconazole.

8

The term pro-triazole fungicide is well known to the person skilled in the art and includes, for example, prothioconazole.

The term DMI fungicides is well known to the person skilled in the art and includes, for example, (S)-[3-(4-Chloro-2-fluoro-phenyl)-5-(2,4-difluoro-phenyl)-isoxazol-4-yl]-pyridin-3-yl-methanol, 3-(4-Chloro-2-fluoro-phenyl)-5-(2,4-difluoro-phenyl)isoxazol-4-yl]-pyridin-3-yl-methanol and Pyrisoxazole. Preferred DMI fungicides are (S)-[3-(4-Chloro-2-fluoro-phenyl)-5-(2,4-difluoro-phenyl)-isoxazol-4-yl]-pyridin-3-yl-methanol and 3-(4-Chloro-2-fluoro-phenyl)-5-(2,4-difluoro-phenyl)-isoxazol-4-yl]-pyridin-3-yl-methanol.

The term SDHI fungicide is well known to the person skilled in the art and includes, for example, N-[9-(dichloromethylene)-1,2,3,4-tetrahydro-1,4-methanonaphthalen-5-yl]-3-(difluoromethyl)-1-methyl-1H-pyrazole-4-carboxamide, Isopyrazam, Sedaxane, Boscalid Fluxapyroxad, Penthiopyrad, Penflufen, Bixafen, Fluopyram, 3-(Difluoromethyl)-N-methoxy-1-methyl-N-[1-methyl-2-(2,4,6-trichlorophenyl) ethyl]-1H-pyrazole-4-carboxamide, Preferred SDHI fungicides are N-[9-(dichloromethylene)-1,2,3,4-tetrahydro-1,4-methanonaphthalen-5-yl]-3-(difluoromethyl)-1-methyl-1H-pyrazole-4-carboxamide, Isopyrazam, 3-(Difluoromethyl)-N-methoxy-1-methyl-N-[1-methyl-2-(2,4,6-trichlorophenyl)ethyl]-1H-pyrazole-4-carboxamide and Fluxapyroxad.

The term Auxins is well known to the person skilled in the art and includes, for example, 2,4-D, MCPA and Dicamba

In a further preferred embodiment the component B is Chlorothalonil. In a further preferred embodiment the component B is Fludioxonil. In a further preferred embodiment the component B is Cyprodinil. In a further preferred embodiment the component B is Fenpropidin. In a further preferred embodiment the component B is Mandipropamid. In a further preferred embodiment the component B is Fluazinam. In a further preferred embodiment the component B is Procymedone. In a further preferred embodiment the component B is Carbendazim. In a further preferred embodiment the component B is Abamectin. In a further preferred embodiment the 40 component B is Clothianidin. In a further preferred embodiment the component B is Emamectin benzoate. In a further preferred embodiment the component B is Imidacloprid. In a further preferred embodiment the component B is Tefluthrin. In a further preferred embodiment the component B is Mefenoxam. In a further preferred embodiment the component B is Orocymedone. In a further preferred embodiment the component B is Thiamethoxam. In a further preferred embodiment the component B is Lambda-cyhalothrin. In a further preferred embodiment the component B is Gamma-50 cyhalothrin. In a further preferred embodiment the component B is Profenofos. In a further preferred embodiment the component B is Lufenuron. In a further preferred embodiment the component B is Diflubenzuron. In a further preferred embodiment the component B is Cypermethrin. In a further preferred embodiment the component B is Novaluron. In a further preferred embodiment the component B is Bifenthrin. In a further preferred embodiment the component B is Methomyl. In a further preferred embodiment the component B is Chlopyrifos. In a further preferred embodiment the component B is Methamidophos. In a further preferred embodiment the component B is Endosulfan. In a further preferred embodiment the component B is Betacyfluthrin. In a further preferred embodiment the component B is Triflumuron. In a further preferred embodiment the component B is Teflubenzuron. In a further preferred embodiment the component B is Acephat. In a further preferred embodiment the component B is Glyphosate. In a further preferred embodi-

ment the component B is Glufosinate. In a further preferred embodiment the component B is Mesotrione. In a further preferred embodiment the component B is Bicyclopyrone. In a further preferred embodiment the component B is Tembotrione. In a further preferred embodiment the component B is 5 Sulcotrione. In a further preferred embodiment the component B is 2,4-D. In a further preferred embodiment the component B is MCPA. In a further preferred embodiment the component B is Trinexapac-ethyl. In a further preferred embodiment the component B is Prohexadione-Ca. In a fur- 10 ther preferred embodiment the component B is Paclobutrazol. In a further preferred embodiment the component B is Acibenzolar-5-methyl. In a further preferred embodiment the component B is Methyl-Jasmonate. In a further preferred embodiment the component B is Cis-Jasmone. In a further 15 preferred embodiment the component B is Manganese. In a further preferred embodiment the component B is Copper. In a further preferred embodiment the component B is Cyflufenamid. In a further preferred embodiment the component B is Tebufloquin. In a further preferred embodiment the compo- 20 nent B is Coumoxystrobin. In a further preferred embodiment the component B is Dicloaminostrobin. In a further preferred embodiment the component B is Flufenoxystrobin. In a further preferred embodiment the component B is Pyrametostrobin. In a further preferred embodiment the component B 25 is Pyraoxystrobin. In a further preferred embodiment the component B is Trifloxystrobin. In a further preferred embodiment the component B is Azoxystrobin. In a further preferred embodiment the component B is Pyraclostrobin. In a further preferred embodiment the component B is Picox- 30 ystrobin. In a further preferred embodiment the component B is Jiaxiangjunzhi. In a further preferred embodiment the component B is Enoxastrobin. In a further preferred embodiment the component B is Triclopyricarb. In a further preferred embodiment the component B is Fluoxastrobin. In a further 35 preferred embodiment the component B is Dimoxystrobin. In a further preferred embodiment the component B is Fenaminostrobin In a further preferred embodiment the component B is the compound of formula II. In a further preferred embodiment the component B is Cyproconazole. In a further pre- 40 ferred embodiment the component B is Difenoconazole. In a further preferred embodiment the component B is Metconazole. In a further preferred embodiment the component B is Propiconazole. In a further preferred embodiment the component B is Epoxiconazole. In a further preferred embodi- 45 ment the component B is Tebuconazole. In a further preferred embodiment the component B is Flutriafol. In a further preferred embodiment the component B is Ipconazole. In a further preferred embodiment the component B is 1-(2-chlorophenyl)-2-(1-chlorocycloprop-1-yl)-3-(1,2,4-triazol-1-yl) 50 propan-2-ol [CAS number 120983-64-4]. In a further preferred embodiment the component B is prothioconazole. In a further preferred embodiment the component B is (S)-[3-(4-Chloro-2-fluoro-phenyl)-5-(2,4-difluoro-phenyl)isoxembodiment the component B is 3-(4-Chloro-2-fluoro-phenyl)-5-(2,4-difluoro-phenyl)-isoxazol-4-yl]-pyridin-3-ylmethanol. In a further preferred embodiment the component B is Pyrisoxazole. In a further preferred embodiment the component B is 3-(difluoromethyl)-N-methoxy-1-methyl-N- 60 [1-methyl-2-(2,4,6-trichlorophenyl)ethyl]-1H-Pyrazole-4carboxamide. In a further preferred embodiment the component B is N-[9-(dichloromethylene)-1,2,3,4-tetrahydro-1,4methanonaphthalen-5-yl]-3-(difluoromethyl)-1-methyl-1Hpyrazole-4-carboxamide. In a further preferred embodiment 65 the component B is Isopyrazam. In a further preferred embodiment the component B is Sedaxane. In a further pre10

ferred embodiment the component B is Boscalid, In a further preferred embodiment the component B is Fluxapyroxad. In a further preferred embodiment the component B is Penthiopyrad. In a further preferred embodiment the component B is Penflufen. In a further preferred embodiment the component B is Bixafen. In a further preferred embodiment the component B is Fluopyram. In a further preferred embodiment the component B is 1-(2-chlorophenyl)-2-(1-chlorocycloprop-1-yl)-3-(1,2,4-triazol-1-yl)propan-2-ol.

The active ingredient mixture according to the invention may bring about the additive enhancement of the spectrum of action with respect to the phytopathogen to be controlled that may in principle be expected but achieves a synergistic effect which extends the range of action of the component (A) and of the component (B) in two ways. Firstly, the rates of application of the component (A) and of the component (B) may be lowered whilst the action remains equally good. Secondly, the active ingredient mixture may still achieve a high degree of phytopathogen control even where the two individual components have become totally ineffective in such a low application rate range. This allows, on the one hand, a substantial broadening of the spectrum of phytopathogens that can be controlled and, on the other hand, increased safety in use.

However, besides the actual synergistic action with respect to fungicidal activity, the pesticidal compositions according to the invention may also have further surprising advantageous properties which can also be described, in a wider sense, as synergistic activity. Examples of such advantageous properties that may be mentioned are: a broadening of the spectrum of fungicidal activity to other phytopathogens, for example to resistant strains; a reduction in the rate of application of the active ingredients; synergistic activity against animal pests, such as insects or representatives of the order Acarina; a broadening of the spectrum of pesticidal activity to other animal pests, for example to resistant animal pests; adequate pest control with the aid of the compositions according to the invention, even at a rate of application at which the individual compounds are totally ineffective; advantageous behaviour during formulation and/or upon application, for example upon grinding, sieving, emulsifying, dissolving or dispensing; increased storage stability; improved stability to light; more advantageous degradability; improved toxicological and/or ecotoxicological behaviour; improved characteristics of the useful plants including: emergence, crop yields, more developed root system, tillering increase, increase in plant height, bigger leaf blade, less dead basal leaves, stronger tillers, greener leaf colour, less fertilizers needed, less seeds needed, more productive tillers, earlier flowering, early grain maturity, less plant verse (lodging), increased shoot growth, improved plant vigor, and early germination; or any other advantages familiar to a person skilled

Substituents at a nitrogen atom are always different from azol-4-yl]-pyridin-3-yl-methanol. In a further preferred 55 halogen. A hydroxy, mercapto or amino substituent is not to be placed on an α -carbon relative to a heteroatom of a core

> The alkyl groups occurring in the definitions of the substituents can be straight-chain or branched and are, for example, methyl, ethyl, n-propyl, isopropyl, n-butyl, secbutyl, iso-butyl, tert-butyl, pentyl, hexyl, heptyl and octyl and their branched isomers. Alkoxy, alkenyl and alkynyl radicals are derived from the alkyl radicals mentioned. The alkenyl and alkynyl groups can be mono- or polyunsaturated.

The cycloalkyl groups occurring in the definitions of the substituents are, for example, cyclopropyl, cyclobutyl, cyclopentyl or cyclohexyl.

Halogen is generally fluorine, chlorine, bromine or iodine, preferably fluorine, bromine or chlorine. This also applies, correspondingly, to halogen in combination with other meanings, such as haloalkyl or haloalkoxy.

Haloalkyl groups preferably have a chain length of from 1 5 to 6 carbon atoms. Haloalkyl is, for example, fluoromethyl, difluoromethyl, trifluoromethyl, chloromethyl, dichloromethyl, trichloromethyl, 2,2,2-trifluoroethyl, 2-fluoroethyl, 2-chloroethyl, pentafluoroethyl, 1,1-difluoro-2,2,2-trichloroethyl, 2,2,3,3-tetrafluoroethyl, 2,2,2-trichloroethyl, 5,5,5-tri-10 fluoropentan-1-yl, 5,5-difluoro-pentan-1-yl, 6,6,6-trifluorohexan-1-yl, 6,6-difluoro-hexan-1-yl, heptafluoro-prop-2-yl and 2-fluoro-prop-2-yl; preferably trichloromethyl, difluorochloromethyl, difluoromethyl, trifluoromethyl and dichlorofluoromethyl.

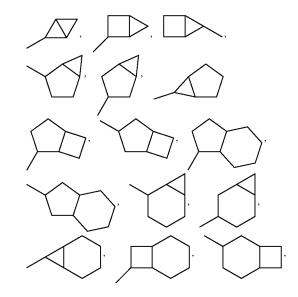
Suitable haloalkenyl groups are alkenyl groups which are mono- di- or trisubstituted by halogen, halogen being fluorine, chlorine, bromine and iodine and in particular fluorine and chlorine, for example 2,2-difluoro-1-methylvinyl, 3-fluoropropenyl, 3-chloropropenyl, 3-bromopropenyl, 2,3, 20 3-trifluoropropenyl, 2,3,3-trichloropropenyl and 4,4,4-trifluorobut-2-en-1-yl.

Suitable haloalkynyl groups are, for example, alkynyl groups which are mono- or polysubstituted by halogen, halogen being bromine, iodine and in particular fluorine and chlorine, for example 3-fluoropropynyl, 3-chloropropynyl, 3-bromopropynyl, 3,3,3-trifluoropropynyl and 4,4,4-trifluorobut-2-yn-1-yl.

Alkoxy is, for example, methoxy, ethoxy, propoxy, i-propoxy, n-butoxy, isobutoxy, sec-butoxy and tert-butoxy; preferably methoxy and ethoxy. Halogenalkoxy is, for example, fluoromethoxy, difluoromethoxy, trifluoromethoxy, 2,2,2-trifluoroethoxy, 1,1,2,2-terrafluoroethoxy, 2-fluoroethoxy, 2-chloroethoxy, 2,2-difluoroethoxy and 2,2,2-trichloroethoxy; preferably difluoromethoxy, 2-chloroethoxy and trif- 35 luoromethoxy.

Alkoxycarbonyl is, for example, methoxycarbonyl, ethoxycarbonyl, propoxycarbonyl, isopropoxycarbonyl, n-butoxycarbonyl, isobutoxycarbonyl, see-butoxycarbonyl or tert-butoxycarbonyl; preferably methoxycarbonyl or 40 ethoxycarbonyl. Haloalkoxy groups preferably have a chain length of from 1 to 6 carbon atoms. Haloalkoxy is, for example, fluoromethoxy, difluoromethoxy, trifluoromethoxy, 2,2,2-trifluoroethoxy, 1,1,2,2-tetrafluoroethoxy, 2-fluoroethoxy, 2-chloroethoxy, 2,2-difluoromethoxy and 2,2,2-trichloroethoxy; preferably difluoromethoxy, 2-chloroethoxy and trifluoromethoxy. Alkylthio groups preferably have a chain length of from 1 to 6 carbon atoms.

Alkoxyalkyl is, for example, methoxymethyl, methoxyethyl, ethoxymethyl, ethoxyethyl, n-propoxymethyl, n-propoxyethyl, isopropoxymethyl or isopropoxyethyl.


Alkylthio is, for example, methylthio, ethylthio, propylthio, isopropylthio, n-butylthio, isobutylthio, sec-butylthio or tert-butylthio, preferably methylthio and ethylthio. Alkylsulfinyl is, for example, methylsulfinyl, ethylsulfinyl, propylsulfinyl, isopropylsulfinyl, n-butylsulfinyl, isobutylsulfinyl, sec-butylsulfinyl. Alkylsulfonyl is, for example, methylsulfinyl and ethylsulfinyl. Alkylsulfonyl is, for example, methylsulfonyl, ethylsulfonyl, propylsulfonyl, isopropylsulfonyl, n-butylsulfonyl, isobutylsulfonyl, sec-butylsulfonyl or tert-butylsulfonyl; preferably methylsulfonyl or ethylsulfonyl.

C₂-C₆ alkylcarbonyl is, for example, methylcarbonyl, ethylcarbonyl, propylcarbonyl, isopropylcarbonyl, n-butylcarbonyl, isobutylcarbonyl, sec-butylcarbonyl, tert-butylcarbonyl or n-pentylcarbonyl and their branched isomers, 65 preferably methylcarbonyl and ethylcarbonyl. Haloalkylcarbonyl radicals are derived from the alkyl radicals mentioned.

12

In the context of the present invention "mono- to polysubstituted" in the definition of the substituents, means typically, depending on the chemical structure of the substituents, monosubstituted to seven-times substituted, preferably monosubstituted to five-times substituted, more preferably mono-, double- or triple-substituted.

According to the present invention, a three- to ten-membered monocyclic or fused bicyclic ring system which may be aromatic, partially saturated or fully saturated is, depending of the number of ring members, for example, selected from the group consisting of

cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, where said cycloalkylgroups for their part may be preferably unsubstituted or substituted by C₁-C₆alkyl or halogen, or is phenyl, benzyl, naphthyl or the following heterocyclic groups: pyrrolyl; pyridyl; pyrazolyl; pyrimidyl; pyrazinyl; imidazolyl; thiadiazolyl; quinazolinyl; furyl; oxadiazolyl; indolizinyl; pyranyl; isobenzofuranyl; thienyl; naphthyridinyl; (1-methyl-1H-pyrazol-3-yl)-; (1-ethyl-1H-pyrazol-3-yl)-; (1-propyl-1H-pyrazol-3-yl)-; (1H-pyrazol-3-yl)-; (1,5-dimethyl-1H-pyrazol-3-yl)-; (4-chloro-1-methyl-1H-pyrazol-3-yl)-; (1H-pyrazol-1-yl)-; (3-methyl-1H-pyrazol-1-yl)-; (3,5-dimethyl-1H-pyrazol-1-yl)-; (3-isoxazolyl)-; (5-methyl-3-isoxazolyl)-; (3-methyl-5-isoxazolyl)-; (5-isoxazolyl)-; (1H-pyrrol-2-yl)-; (1-methyl-1H-pyrrol-2-yl)-; (1H-pyrrol-1-yl)-; (1-methyl-1H-pyrrol-3-yl)-; (2-furanyl)-; (5-methyl-2-furanyl)-; (3-furanyl)-; (5-methyl-2-thienyl)-; (2-thienyl)-; (3-thienyl)-; (1-methyl-1H-imidazol-2-yl)-; (1H-imidazol-2yl)-; (1-methyl-1H-imidazol-4-yl)-; (1-methyl-1H-imidazol-5-yl)-; (4-methyl-2-oxazolyl)-; (5-methyl-2-oxazolyl)-; (2-oxazolyl)-; (2-methyl-5-oxazolyl)-; (2-methyl-4-oxazolyl)-; (4-methyl-2-thiazolyl)-; (5-methyl-2-thiazolyl)-; (2-thiazolyl)-; (2-methyl-5-thiazolyl)-; (2-methyl-4-thiazolyl)-; (3-methyl-4-isothiazolyl)-; (3-methyl-5-isothiazolyl)-; (5-methyl-3-isothiazolyl)-; (1-methyl-1H-1,2,3-triazol-4-yl)-; (2-methyl-2H-1,2,3-triazol-4-yl)-; (4-methyl-2H-1,2,3-triazol-2-yl)-; (1-methyl-1H-1,2,4-triazol-3-yl)-; (1,5dimethyl-1H-1.2.4-triazol-3-yl)-: (3-methyl-1H-1.2.4-(5-methyl-1H-1,2,4-triazol-1-yl)-; triazol-1-yl)-; dimethyl-4H-1,2,4-triazol-3-yl)-; (4-methyl-4H-1,2,4triazol-3-yl)-; (4H-1,2,4-triazol-4-yl)-; (5-methyl-1,2,3oxadiazol-4-yl)-; (1,2,3-oxadiazol-4-yl)-; (3-methyl-1,2,4oxadiazol-5-yl)-; (5-methyl-1,2,4-oxadiazol-3-yl)-; (4-methyl-3-furazanyl)-; (3-furazanyl)-; (5-methyl-1,2,4oxadiazol-2-yl)-; (5-methyl-1,2,3-thiadiazol-4-yl)-; (1,2,3-thiadiazol-4-yl)-; (3-methyl-1,2,4-thiadiazol-5-yl)-; (5-methyl-1,2,4-thiadiazol-3-yl)-; (5-methyl-1,3,4-thiadiazol-2-yl)-; (1-methyl-1H-tetrazol-5-yl)-; (1H-tetrazol-5-yl)-; (5-methyl-1H-tetrazol-5-yl)-; (2-methyl-2H-tetrazol-5-yl)-; (2-thyl-2H-tetrazol-5-yl)-; (2-methyl-2H-tetrazol-2-yl)-; (2-pyridyl)-; (6-methyl-2-pyridyl)-; (4-pyridyl)-; (3-pyridyl)-; (6-methyl-3-pyridazinyl)-; (5-methyl-3-pyridazinyl)-; (3-pyridazinyl)-; (2-pyrimidinyl)-; (2-methyl-4-pyrimidinyl)-; (2-chloro-4-pyrimidinyl)-; (2-methyl-4-pyrimidinyl)-; (4-pyrimidinyl)-; (2-pyrazinyl)-; (4,6-dimethyl-1,3,5-triazin-2-yl)-; (4,6-dichloro-1,3,5-triazin-2-yl)-; (1,3,5-triazin-2-yl)-; (4-methyl-1,3,5-triazin-2-yl)-; (3-methyl-1,2,4-triazin-5-yl)-; (3-methyl-1,2,4-triazin-6-yl)-;

-continued O
$$(R_{28})r$$
 $(R_{28})r$ and $(R_{28})r$,

wherein each R_{26} is methyl, each R_{27} and each R_{28} are independently hydrogen, C_1 - C_3 alkyl, C_1 - C_3 alkylthio or trifluoromethyl, X_4 is oxygen or sulfur and r=1, 2, 3 or 4.

There no free valency is indicated in those definitions, for example as in

the linkage site is located at the carbon atom labelled "CH" or $_{25}$ in a case such as, for example,

at the bonding site indicated at the bottom left.

The following substituents definitions, including preferred 35 definitions, may be combined in any combination:

 R_1 and R_2 are each independently selected from hydrogen, $C_1\text{-}C_4$ alkyl, $C_3\text{-}C_4$ alkenyl, $C_3\text{-}C_4$ alkynyl, (R_{10}) carbonyl and (R_{10}) oxycarbonyl;

or R_1 and R_2 together with the nitrogen atom to which they 40 are attached form a 5- or 6 membered cyclic group which may be saturated or unsaturated and may contain a further heteroatom selected from S or O.

Preferably, R_1 and R_2 are each independently selected from hydrogen, C_1 - C_4 alkyl, C_3 - C_4 alkenyl and C_3 - C_4 alkynyl;

or R_1 and R_2 together with the nitrogen atom to which they are attached form a pyrrolidine or piperidine.

More preferably, R_1 and R_2 are each independently selected from hydrogen or C_1 - C_4 alkyl;

or $\rm R_1$ and $\rm R_2$ together with the nitrogen atom to which they $\,$ 50 are attached form a pyrrolidine or piperidine.

Even more preferably, R_1 and R_2 are each independently selected from hydrogen or C_1 - C_4 alkyl.

More preferably again, R_1 and R_2 are each C_1 - C_4 alkyl.

More favourably again, R_1 and R_2 are each independently 55 selected from methyl, ethyl and isopropyl.

Yet more favourably, R_1 is methyl and R_2 is selected from methyl, ethyl and isopropyl.

Yet more favourably still, R_1 is methyl and R_2 is selected from ethyl and isopropyl.

Most preferably, R_1 is methyl and R_2 is ethyl.

piperidino, morpholino, thiomorpholino, formyl, hydroxy-carbonyl, C_2 - C_7 alkoxycarbonyl, C_2 - C_7 haloalkoxycarbonyl, C_4 - C_7 alkenyloxycarbonyl, C_4 - C_7 haloalkenyloxycarbonyl, C_2 - C_7 alkylcarbonyl, C_2 - C_7 haloalkylcarbonyl, C_1 - C_6 alkylsulfinyl, C_1 - C_6 alkylsulfonyl, C_1 - C_6 haloalkylthio, C_1 - C_6 haloalkylsulfinyl, C_1 - C_6 haloalkylsulfonyl, C_1 - C_6 hydroxyalkyl, phenyl or benzyl wherein the phenyl and benzyl are optionally substituted by one or more groups independently selected from the group consisting of halogen, cyano, hydroxy, mercapto, amino, C_1 - C_6 alkyl, C_1 - C_6 haloalkyl, C_1 - C_6 alkoxy, C_1 - C_6 haloalkoxy, C_1 - C_6 alkylsulfinyl and C_1 - C_6 alkylsulfonyl.

Preferably, R₃ represents hydrogen, halogen, cyano, mercapto, hydroxy, C₁-C₄ alkyl, C₁-C₄ haloalkyl, C₂-C₄ alkenyl, C₂-C₄ haloalkenyl, C₂-C₄ alkynyl, C₁-C₄ alkoxy, C₁-C₆ haloalkoxy, C₃-C₆ cycloalkyl, amino, C₁-C₂ alkylamino, di(C₁-C₆alkyl)amino, pyrrolidino, imidazolino, triazolino, tetrazolino, formyl, C₂-C₅ alkylcarbonyl, C₂-C₅ haloalkylcarbonyl, C₁-C₆alkylsulfinyl, C₁-C₆ haloalkylsulfinyl, C₁-C₆haloalkylsulfonyl or C₁-C₆ hydroxyalkyl.

More preferably, R_3 represents hydrogen, halogen, cyano, C_1 - C_4 alkyl, C_1 - C_4 haloalkyl, C_2 - C_4 alkenyl, C_2 - C_4 alkynyl, C_1 - C_4 alkoxy, C_3 - C_6 cycloalkyl, amino, C_1 - C_2 alkylamino, di(C_1 - C_6 alkyl)amino, pyrrolidino, imidazolino, triazolino, formyl, phenyl, C_2 - C_4 alkylcarbonyl, C_1 - C_6 alkylthio, C_1 - C_6 alkylsulfinyl, C_1 - C_6 alkylsulfonyl or C_1 - C_6 hydroxyalkyl.

Even more preferably, R₃ represents hydrogen, halogen, cyano, C₁-C₄ alkyl, C₂-C₄ alkenyl, C₂-C₄ alkynyl, C₁-C₄ alkoxy, C₃-C₆ cycloalkyl, amino, C₁-C₂ alkylamino, di(C₁-C₆alkyl)amino, pyrrolidino, imidazolino, triazolino, formyl, C₂-C₄alkylcarbonyl, C₁-C₄alkylthio, C₁-C₄ alkylsulfinyl, C₁-C₄ alkylsulfonyl, C₁-C₄ haloalkylthio, C₁-C₄ haloalkylsulfinyl or C₁-C₆ hydroxyalkyl.

More preferably again, R_3 represents hydrogen, halogen, cyano, C_1 - C_4 alkyl, C_1 - C_4 haloalkyl, C_2 - C_4 alkenyl, C_2 - C_4 alkynyl, C_1 - C_4 alkoxy, C_3 - C_6 cycloalkyl, C_1 - C_4 alkylsulfinyl or C_1 - C_4 alkylsulfonyl.

Favourably, R_3 represents hydrogen, halogen, cyano, C_1 - C_4 alkyl, C_1 - C_4 haloalkyl, C_2 - C_4 alkenyl, C_2 - C_4 alkynyl, C_1 - C_4 alkoxy, C_3 - C_6 cycloalkyl, C_1 - C_4 alkylsulfinyl or C_1 - C_4 alkylsulfonyl.

Even more favourably, R₃ represents hydrogen, halogen, cyano, C₁-C₄ alkyl, C₁-C₄ haloalkyl, C₂-C₄ alkynyl, C₁-C₄ alkoxy or C₃-C₆ cycloalkyl.

More favourably again, R_3 represents hydrogen, halogen, C_1 - C_4 alkyl, C_1 - C_4 haloalkyl, cyclopropyl, ethynyl or C_1 - C_4 alkoxy.

Yet more favourably, R₃ is selected from hydrogen, bromine, iodine, methyl, CHF₂, cyclopropyl, ethynyl and methoxy.

Yet more favourably still, R₃ represents hydrogen, bromine, iodine, methyl, difluoromethyl or methoxy.

Most preferably, R₃ represents bromine or methyl.

 R_4 represents hydrogen, halogen, cyano, amino, $C_1\text{-}C_4$ alkyl, $C_1\text{-}C_4$ haloalkyl, $C_3\text{-}C_6$ cycloalkyl, $C_2\text{-}C_4$ alkenyl, $C_2\text{-}C_4$ alkynyl, $C_1\text{-}C_4$ alkoxy, $C_1\text{-}C_4$ haloalkoxy, $C_1\text{-}C_4$ alkylthio, $C_1\text{-}C_4$ alkylsulfinyl, $C_1\text{-}C_4$ alkylsulfonyl, methylamino or dimethylamino.

Preferably, R_4 is selected from hydrogen, fluorine, chlorine, bromine, C_1 - C_4 alkyl, C_1 - C_4 alkenyl, C_1 - C_4 haloalkyl, C_1 - C_4 alkoxy and C_3 - C_6 cycloalkyl.

More preferably, R_4 is selected from fluorine, chlorine, bromine, C_1 - C_4 alkyl, C_1 - C_4 alkenyl, C_1 - C_4 haloalkyl, C_1 - C_4 alkoxy and C_3 - C_6 cycloalkyl.

Even more preferably, R_4 is selected from fluorine, chlorine, methyl, ethyl, ethenyl, propyl, propenyl, isopropyl, iso-

propenyl, cyclopropanyl, methoxy, ethoxy, monofluorompolyfluoromethyl, ethyl, monofluoroethyl polyfluoromethyl.

More preferably again, R₄ is selected from methyl, ethyl, methoxy, fluorine and chlorine.

More favourably again, R4 is selected from methyl, methoxy, fluorine and chlorine.

Most preferably, R₄ is methyl.

In another group of compounds, R₄ is selected from methoxy, fluorine and chlorine.

is hydrogen, C_1 - C_{12} alkyl, C_3 - C_{12} alkenyl, C_3 - C_{12} alkynyl, C_1 - C_{12} alkylsulfonyl, C_2 - C_{12} alkenylsulfonyl, phenylsulfonyl or benzylsulfonyl, or is C₁-C₁₂alkyl, C_2 - C_{12} alkynyl, C_1 - C_{12} alkylsulfonyl, C_2 - C_{12} alkenyl, mono- to polysubstituted by substituents independently selected from the group consisting of halogen, cyano, nitro, hydroxy, mercapto, azido, formyl, C2-C7alkylcarbonyl, C₂-C₇haloalkylcarbonyl, C_1 - C_6 alkyl, C_1 - C_6 haloalkyl, C₁-C₆haloalkoxy, C_1 - C_6 alkoxy, C₁-C₆alkylthio, 20 C₁-C₆alkylsulfinyl and C₁-C₆alkylsulfonyl; or

 R_5 is formyl, C_2 - C_{12} alkylcarbonyl, C_3 - C_{12} alkenylcarbonyl, C_3 - C_{12} alkynylcarbonyl, C_4 - C_{12} cycloalkylcarbonyl, benzylcarbonyl, phenylcarbonyl, C_2 - C_{12} alkoxycarbonyl, C_4 - C_{12} alkenyloxycarbonyl, C_4 - C_{12} alkynyloxycarbonyl, 25 C₄-C₁₂ cycloalkoxycarbonyl, benzyloxycarbonyl or phenoxycarbonyl, or is C2-C12 alkylcarbonyl, C3-C12 alkenylcarbonyl, C₃-C₁₂ alkynylcarbonyl, C₄-C₁₂ cycloalkylcarbonyl, benzylcarbonyl, phenylcarbonyl, C_2 - C_{12} alkoxycarbonyl, C_4 - C_{12} alkenyloxycarbonyl, C_4 - C_{12} alkynyloxycarbonyl, 30 C₄-C₁₂ cycloalkoxycarbonyl, benzyloxycarbonyl or phenoxycarbonyl mono- to polysubstituted by substituents independently selected from the group consisting of halogen, cyano, C_1 - C_6 alkyl, C_1 - C_6 haloalkyl and C_1 - C_6 alkoxy; or

 $(R_{54}O)(R_{55}O)(R_{56}O)Si-(C_1 (R_{55}O)(R_{56}O)Si$ —, C_{12} alkyl)- or $(R_{54}O)(R_{55}O)(R_{56}O)Si$ — $(C_3-C_8cycloalkyl)$ -;

 $R_5 \text{ is } C_1\text{-}C_6 alkyl\text{-}B\text{---}C_1\text{-}C_{12} alkyl\text{-}, C_2\text{--}C_6 alkenyl\text{-}B\text{---}C_1\text{--} \ \, 40$ C_2 - C_6 alkynyl-B— C_1 - C_{12} alkyl-, C_3 - C_8 cycloalkyl-B— C_1 - C_{12} alkyl-, benzyl-B—C₁- $C_{12} alkyl-, \quad phenyl-B-C_1-C_{12} alkyl-, \quad C_1-C_6 alkyl-B-C_2-C_6 alkyl-B-C_6 alkyl$ C₂-C₆alkenyl-B—C₂-C₁₂alkenyl-, C_{12} alkenyl-, C_2 - C_6 alkynyl-B— C_2 - C_{12} alkenyl-, C_3 - C_8 cycloalkyl-B— C_2 - 45 C_{12} alkenyl-, benzyl-B— C_2 - C_{12} alkenyl-, phenyl-B— C_2 - C_{12} alkenyl-, C_1 - C_6 alkyl-B— C_2 - C_{12} alkynyl-, C_2 - C_6 alkenyl- $B-C_2-C_{12}$ alkynyl-, C_2 - C_6 alkynyl-B— C_2 - C_{12} alkynyl-, C_3 - C_8 cycloalkyl-B— C_2 - C_{12} alkynyl-, benzyl-B— C_2 - C_{12} alkynyl-, phenyl-B— $\hat{C_2}$ - C_{12} alkynyl-, C_1 - C_6 alkyl-B— 50 consisting of C₃-C₈cycloalkyl-, C₂-C₆alkenyl-B—C₃-C₈cycloalkyl-, C₂-C₆alkynyl-B—C₃-C₈cycloalkyl-, C₃-C₈cycloalkyl-B-C₃-C₈cycloalkyl-, benzyl-B—C₃-C₁₂cycloalkyl- or phenyl-B—C₃-C₁₂cycloalkyl-, wherein the group B is selected from -C(=O), -C(=S), $-C(=NOR_{59})$, $-C(R_{60})$ 55 =NO-, =ON=C(R₆₀)-, =O-C(=O)-, =C(=O)-O-, =O-, =S(=O)-, =S(=O)-, =S(=O)- $-N(R_{62})-C=O)-$, $-C=O)-N(R_{62})-$, $-N(R_{62}) SO_2$ —or — SO_2 — $N(R_{62})$ —; or

 R_5 is C_1 - C_6 alkyl-B— C_1 - C_{12} alkyl-, C_2 - C_6 alkenyl-B— C_1 - C_2 - C_6 alkynyl-B— C_1 - C_{12} alkyl-, C_3 - C_8 cycloalkyl-B— C_1 - C_{12} alkyl-, benzyl-B—C₁- C_{12} alkyl-, phenyl-B— C_1 - C_{12} alkyl-, C_1 - C_6 alkyl-B— C_2 -C₁₂alkenyl-, C_2 - C_6 alkenyl-B— C_2 - C_{12} alkenyl-, 65 C_2 - C_6 alkynyl-B— C_2 - C_{12} alkenyl-, C_3 - C_8 cycloalkyl-B— C_2 -C₁₂alkenyl-, benzyl-B—C₂-C₁₂alkenyl-, phenyl-B—C₂-

18

C₁₂alkenyl-, C₁-C₆alkyl-B—C₂-C₁₂alkynyl-, C₂-C₆alkenyl-C₂-C₆alkynyl-B—C₂-C₁₂alkynyl-, $B-C_2-C_{12}$ alkynyl-, C₃-C₈cycloalkyl-B—C₂-C₁₂alkynyl-, benzyl-B—C₂-C₁₂alkynyl-, phenyl-B—C₂-C₁₂alkynyl-, C₁-C₆alkyl-B— C₃-C₈cycloalkyl-, C₂-C₆alkenyl-B—C₃-C₈cycloalkyl-, C₂-C₆alkynyl-B—C₃-C₈cycloalkyl-, C₃-C₈cycloalkyl-B- C_3 - C_8 cycloalkyl-, benzyl-B— C_3 - C_{12} cycloalkyl-, phenyl-B—C₃-C₁₂cycloalkyl-, all of which, in turn, are mono- to poly-substituted by substituents independently selected from the group consisting of halogen, cyano, hydroxy, mercapto, C₁-C₆ haloalkyl, C₁-C₆ alkoxy, formyl, C₂-C₆ alkylcarbonyl, C_1 - C_6 alkylsulfinyl and C_1 - C_6 alkylsulfonyl;

 R_5 is A-, A-(C_1 - C_6 alkyl)-, A-O—(C_1 - C_6 alkyl)-, A-(C_3 -C2-C12alkenylsulfonyl, phenylsulfonyl or benzylsulfonyl 15 C6alkenyl)-, A-O—(C4-C6alkenyl)-, A-(C3-C6-alkynyl)-, A-O—(C₄-C₆alkynyl)-, A-(C₃-C₈cycloalkyl)- or A-O—(C₃-C₈cycloalkyl)-; or

> wherein A is a three- to ten-membered monocyclic or fused bicyclic ring system which can be aromatic, partially saturated or fully saturated and can contain 1 to 4 hetero atoms selected from the group consisting of nitrogen, oxygen and sulphur, it not being possible for each ring system to contain OOO, SSS and OOS fragments, and it being possible for the three- to ten-membered ring system to be itself mono- or polysubstituted

> A1) by substituents independently selected from the group consisting of

halogen, cyano, nitro, hydroxy, mercapto, nitro, azido, formyl, carboxy, \Longrightarrow O, \Longrightarrow S, C₁-C₆ alkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl, C₃-C₈ cycloalkyl, C₁-C₆ haloalkyl, C₂-C₆ haloalkenyl, C_2 - C_6 haloalkynyl, C_3 - C_8 halocycloalkyl, C_1 - C_6 alkoxy, C₁-C₆ haloalkoxy, C₃-C₆ alkenyloxy, C₃-C₆ haloalkenyloxy, C₃-C₆ alkynyloxy, C₃-C₈ cycloalkyloxy, benzyl, benzyloxy, phenyl and phenoxy, where the benzyl, benzyloxy, phenyl and phenoxy, in turn, may be mono- to polysubstituted by substituents independently selected from the group consisting of halogen, cyano, nitro, hydroxy, mercapto, amino, C_1 - C_6 alkyl, C_1 - C_6 haloalkyl, C_1 - C_6 alkoxy, C_1 - C_6 haloalkoxy, $\mathrm{C_1\text{-}C_6}$ alkylthio, $\mathrm{C_1\text{-}C_6}$ alkylsulfinyl and $\mathrm{C_1\text{-}C_6}$ alkylsulfonyl; or

A2) by substituents independently selected form the group consisting of $(R_{14})S(=O)(=NR_{13})-, (R_{14})(R_{15})S(=O)$ =N-; $-Si(R_{51})(R_{52})(R_{53})$, $-NR_{57}R_{58}$, -C(=-O) $NR_{57}R_{58}$, $C(=S)NR_{57}R_{58}$, $HC(=NOR_{59})$ —, (C_1-C_6alkyl) $C(=NOR_{59})$ —, $(C_1-C_6haloalkyl)C(=NOR_{59})$ —, C_6 alkyl) $C(=NOR_{59})C_1$ - C_6 alkyl-, (C₁-C₆haloalkyl)C $=NOR_{59})C_1-C_6$ alkyl-, $N(C_1-C_6$ alkyl)aminosulfonyl and $N,N-di(C_1-C_6alkyl)$ aminosulfonyl; or

A3) by substituents independently selected from the group

formyl, C2-C7 alkylcarbonyl, C2-C7 haloalkylcarbonyl, C₃-C₇ alkenylcarbonyl, C₃-C₇ haloalkenylcarbonyl, C₄-C₉ cycloalkylcarbonyl, C_4 - C_9 halocycloalkylcarbonyl, C_2 - C_7 alkoxycarbonyl, C_2 - C_7 haloalkoxycarbonyl, C_3 - C_7 alkeny- \bar{C}_3 - C_7 alkynyloxycarbonyl, loxycarbonyl, cycloalkoxycarbonyl, C2-C7 alkylthiocarbonyl and benzyloxycarbonyl, and benzyloxycarbonyl mono- to polysubstituted by substituents independently selected from the group consisting of halogen, cyano, hydroxy, C₁-C₆alkyl, C₁-C₆ haloalkyl and C₁-C₆ alkoxy; or

A4) by substituents independently selected from the group consisting of hydroxyl, C_1 - C_4 alkyl, C_2 - C_4 alkenyl, C_2 - C_4 alkynyl, C_1 - C_4 alkoxy, halogen, C_1 - C_4 haloalkyl, C_2 - C_4 haloalkenyl, cyano, benzyl, phenyl, =C(R³⁶)₂, =N-OH, $=N-O-C_3-C_4$ $=N-O-C_1-C_4$ -alkyl, alkenvl. =N-O-C₃-C₄ alkynyl, =N-O-C₁-C₄ haloalkyl, $=N-O-C_3-C_4$ haloalkenyl, —N—O-benzyl

20

—N—O-phenyl, wherein the —N—O-benzyl and —N—O-phenyl are optionally substituted by one or more group selected from the group consisting of halogen, methyl, halomethyl; or

 R_5 is $-N = C(R_8)(R_9)$; or

 R_5 is a $C_8\text{-}C_{11}$ spirobicyclic system containing 0, 1 or 2 O, S or N atoms, wherein there are no adjacent O atoms, which is optionally substituted by one or more groups independently selected from halogen, CN, NO $_2$, OH, SH, CHO, COOH, tri(C $_1\text{-}C_6\text{-}alkyl)$ silyl, $C_1\text{-}C_6$ alkyl, —CH(CH $_3$)—CH $_2$ —10 CH $_2$ —CH $_3$, —CH—CH(CH $_3$)—CH $_2$ —CH $_3$, —CH—CH(CH $_3$)—CH $_2$ —CH(CH $_3$)—CH (CH $_3$)—Ch (alkenyl, C $_3\text{-}C_6$ cycloalkyl, C $_3\text{-}C_6$ halocycloalkyl, C $_2\text{-}C_6$ alkenyl, C $_2\text{-}C_6$ haloalkenyl, C $_1\text{-}C_6$ alkoxy, C $_1\text{-}C_6$ haloalkoxy, C $_2\text{-}C_7\text{-}$ alkylcarbonyl, 15 C $_2\text{-}C_7\text{-}$ alkoxycarbonyl, C $_4\text{-}C_7\text{-}$ alkenyloxycarbonyl, C $_4\text{-}C_7\text{-}$ alkynyloxycarbonyl, C $_1\text{-}C_6$ alkylthio, C $_1\text{-}C_6$ alkylsulfinyl, C $_1\text{-}C_6$ alkylsulfonyl, —O, —C(—O)NH $_2$, —C(—O)NH (CH $_3$), —C(—O)N(CH $_3$) $_2$ and —C(—S)NH $_2$.

Preferably, R_5 represents hydrogen, C_1 - C_{12} alkylsulfonyl, 20 C_1 - C_{12} alkyl, C_3 - C_{12} alkenyl, C_3 - C_{12} alkenyl, or is C_1 - C_{12} alkyl, C_2 - C_{12} alkenyl, C_2 - C_{12} alkynyl mono- to polysubstituted by substituents independently selected from the group consisting of halogen, cyano, nitro, hydroxy, mercapto, azido, formyl, C_2 - C_7 alkylcarbonyl, C_2 - C_7 haloalkylcarbonyl, C_1 - C_6 alkyl, C_1 - C_6 alkoxy, C_1 - C_6 haloalkoxy, C_1 - C_6 alkylthio, C_1 - C_6 alkylsulfinyl and C_1 - C_6 alkylsulfonyl; or

 $\begin{array}{lll} R_5 & is & (R_{51})(R_{52})(R_{53})Si - , & (R_{61})(R_{62})(R_{63})Si - (C_1 - C_{12}alkyl) - , & (R_{51})(R_{52})(R_{53})Si - (C_3 - C_8cycloalkyl) - , & (R_{54}O) & 30 \\ (R_{55}O)(R_{56}O)Si - , & (R_{54}O)(R_{55}O)(R_{56}O)Si - (C_1 - C_{12}alkyl) - & or & (R_{54}O)(R_{55}O)(R_{56}O)Si - (C_3 - C_8cycloalkyl) - ; \\ or & \end{array}$

 R_5 is $C_1\hbox{-} C_6 alkyl\hbox{-} B\hbox{---} C_1\hbox{-} C_2 alkyl\hbox{--}, \, C_2\hbox{-} C_6 alkenyl\hbox{-} B\hbox{----} C_1\hbox{--}$ C_2 - C_6 alkynyl-B— C_1 - C_{12} alkyl-, 35 C_3 - C_8 cycloalkyl-B— C_1 - C_{12} alkyl-, benzyl-B—C₁- C_{12} alkyl-, phenyl- $B-C_1-C_{12}$ alkyl-, C_1-C_6 alkyl- $B-C_2-C_6$ alkyl-C₁₂alkenyl-, C₂-C₆alkenyl-B—C₂-C₁₂alkenyl-, C₂-C₆alkyl- $B - C_2 - C_{12} \\ alkenyl-, \quad C_3 - C_8 \\ cycloalkyl-B - C_2 - C_{12} \\ alkenyl-,$ benzyl-B—C₂-C₁₂alkenyl-, phenyl-B—C₂-C₁₂alkenyl-, 40 C_1 - C_6 alkyl-B— C_2 - C_{12} alkynyl-, C_2 - C_6 alkenyl-B— C_2 -C₁₂alkynyl-, C_2 - C_6 alkynyl-B— C_2 - C_{12} alkynyl-, C₃-C₈cycloalkyl-B—C₂-C₁₂alkynyl-, benzyl-B—C₂- $\begin{array}{llll} C_{12}alkynyl-, & phenyl-B-C_2-C_{12}alkynyl-, & C_1-C_6alkyl-B-C_3-C_8cycloalkyl-, & C_2-C_6alkenyl-B-C_3-C_8cycloalkyl-, & 45 \end{array}$ C₂-C₆alkynyl-B—C₃-C₈cycloalkyl-, C₃-C₈cycloalkyl-B-C₃-C₈cycloalkyl-, benzyl-B—C₃-C₁₂cycloalkyl- or phenyl-B—C₃-C₁₂cycloalkyl-, wherein the group B is selected from $-C(=O)-, -C(=S)-, -C(=NOR_{59})-, -C(R_{60})$ =NO-, -ON=C(R₆₀)-, -O-C(=O)-, -C(=O)- 50 SO_2 —or— SO_2 — $N(R_{62})$ —; or

 \overline{R}_5 is C_1 - C_6 alkyl-B— \overline{C}_1 - C_{12} alkyl-, C_2 - C_6 alkenyl-B— C_1 - 55 C₁₂alkyl-, C_2 - C_6 alkynyl-B— C_1 - C_{12} alkyl-, C_3 - C_8 cycloalkyl-B— C_1 - C_{12} alkyl-, benzyl-B—C₁- C_{12} alkyl-, phenyl-B— C_1 - C_{12} alkyl-, C_1 - C_6 alkyl-B— C_2 - C_{12} alkenyl-, C_2 - C_6 alkenyl-B— C_2 - C_{12} alkenyl-, C_2 - C_6 alkyl- $B-C_2-C_{12}$ alkenyl-, C_3-C_8 cycloalkyl- $B-C_2-C_{12}$ alkenyl-, 60 phenyl-B—C₂-C₁₂alkenyl-, benzyl-B— C_2 - C_{12} alkenyl-, C_1 - C_6 alkyl-B— C_2 - C_{12} alkynyl-, C_2 - C_6 alkenyl-B— C_2 -C₂-C₆alkynyl-B—C₂-C₁₂alkynyl-, C₃-C₈cycloalkyl-B—C₂-C₁₂alkynyl-, benzyl-B—C₂- C_{12} alkynyl-, phenyl-B— C_2 - C_{12} alkynyl-, C_1 - C_6 alkyl-B— 65 C₂-C₆alkenyl-B—C₃-C₈cycloalkyl-, C₃-C₈cycloalkyl-, C₂-C₆alkynyl-B—C₃-C₈cycloalkyl-, C₃-C₈cycloalkyl-B-

 $\rm C_3\text{-}C_8cycloalkyl\text{-},\ benzyl\text{-}B\text{--}C_3\text{--}C_{12}cycloalkyl\text{-},\ phenyl\text{-}B\text{--}C_3\text{--}C_{12}cycloalkyl\text{-},\ all\ of\ which,\ in\ turn,\ are\ mono-\ to\ polysubstituted\ by\ substituents\ independently\ selected\ from\ the\ group\ consisting\ of\ halogen,\ cyano,\ hydroxy,\ mercapto,\ C_1\text{--}C_6\ haloalkyl,\ C_1\text{--}C_6\ alkoxy,\ formyl,\ C_2\text{--}C_6\ alkylcarbonyl,\ C_1\text{--}C_6\ alkylsulfinyl\ and\ C_1\text{--}C_6\ alkylsulfonyl;\ or\ }$

 R_5 is selected from A-, A-(C_1 - C_6 alkyl)-, A-O—(C_1 - C_6 alkyl)-, A-(C_3 - C_6 alkenyl)-, A-O—(C_4 - C_6 alkenyl)-, A-(C_3 - C_6 -alkynyl)-, A-O—(C_4 - C_6 alkynyl)-, A-(C_3 - C_8 cycloalkyl)- and A-O—(C_3 - C_8 cycloalkyl)-;

wherein A is a three- to ten-membered monocyclic or fused bicyclic ring system which can be aromatic, partially saturated or fully saturated and can contain 1 to 4 hetero atoms selected from the group consisting of nitrogen, oxygen and sulphur, it not being possible for each ring system to contain —O—O—, —S—S— and —O—S— fragments, and it being possible for the three- to ten-membered ring system to be itself mono- or polysubstituted

A1) by substituents independently selected from the group consisting of

halogen, cyano, nitro, hydroxy, mercapto, nitro, azido, formyl, carboxy, =O, =S, C_1 - C_6 alkyl, C_2 - C_6 alkenyl, C_2 - C_6 alkynyl, C_3 - C_8 cycloalkyl, C_1 - C_6 haloalkyl, C_2 - C_6 haloalkenyl, C_2 - C_6 haloalkynyl, C_3 - C_8 halocycloalkyl, C_1 - C_6 alkoxy, C_1 - C_6 haloalkoxy, C_3 - C_6 alkenyloxy, C_3 - C_6 haloalkenyloxy, C_3 - C_6 alkynyloxy, C_3 - C_8 cycloalkyloxy, C_3 - C_8 halocycloalkyloxy, C_3 - C_8 cycloalkenyloxy, C_3 - C_8 halocycloalkyloxy, benzyl, benzyloxy, phenyl and phenoxy, where the benzyl, benzyloxy, phenyl and phenoxy, in turn, may be mono- to polysubstituted by substituents independently selected from the group consisting of halogen, cyano, nitro, hydroxy, mercapto, amino, C_1 - C_6 alkyl, C_1 - C_6 haloalkyl, C_1 - C_6 alkoxy, C_1 - C_6 alkylsulfinyl and C_1 - C_6 alkylsulfonyl; or

A3) by substituents independently selected from the group consisting of

formyl, C_2 - C_7 alkylcarbonyl, C_2 - C_7 haloalkylcarbonyl, C_3 - C_7 alkenylcarbonyl, C_3 - C_7 haloalkenylcarbonyl, C_4 - C_9 cycloalkylcarbonyl, C_2 - C_7 alkoxycarbonyl, C_4 - C_7 alkoxycarbonyl, C_4 - C_9 cycloalkoxycarbonyl and benzyloxycarbonyl, and benzyloxycarbonyl mono- to polysubstituted by substituents independently selected from the group consisting of halogen, cyano, hydroxy, C_1 - C_6 alkyl, C_1 - C_6 haloalkyl and C_1 - C_6 alkoxy; or

A4) by substituents independently selected from the group consisting of hydroxyl, C_1 - C_4 alkyl, C_2 - C_4 alkenyl, C_2 - C_4 alkynyl, C_1 - C_4 alkoxy, halogen, C_1 - C_4 haloalkyl, C_2 - C_4 haloalkenyl, cyano, benzyl, phenyl, =C($R^{36'}$)₂, =N—OH, =N—O— C_1 - C_4 -alkyl, =N—O— C_3 - C_4 alkenyl, =N—O— C_3 - C_4 alkenyl, =N—O— C_1 - C_4 haloalkyl, =N—O—benzyl and =N—O-phenyl, wherein the =N—O-benzyl and =N—O-phenyl are optionally substituted by one or more group selected from the group consisting of halogen, methyl, halomethyl; or

 R_5 is a $C_8\text{-}C_{11}$ spirobicyclic system containing 0, 1 or 2 O, S or N atoms, wherein there are no adjacent O atoms, which is optionally substituted by one or more groups independently selected from halogen, CN, NO_2, OH, SH, CHO, COOH, tri(C_1-C_6-alkyl)silyl, $C_1\text{-}C_6$ alkyl, —CH(CH_3)—CH_2—CH_2—CH_3, —CH—CH(CH_3)—CH_2—CH_3, —CH_2—CH_2—CH(CH_3)—CH_3, —CH_2—CH_2—CH(CH_3)_2, CH_1CH_2—CH_2—CH(CH_3)_2, C1-C_6 haloalkyl, C3-C_6 cycloalkyl, C3-C_6 halocycloalkyl, C2-C_6 alkenyl, C2-C_6 haloalkenyl, C1-C6 alkoxy, C1-C6 haloalkoxy, C2-C7alkylcarbonyl,

 $\begin{array}{lll} C_2\text{-}C_7\text{alkoxycarbonyl}, & C_4\text{-}C_7\text{-alkenyloxycarbonyl}, \\ C_4\text{-}C_7\text{alkynyloxycarbonyl}, C_1\text{-}C_6\text{ alkylthio}, C_1\text{-}C_6\text{ alkylsulfinyl}, \\ C_1\text{-}C_6\text{ alkylsulfonyl}, \Longrightarrow, -C(\Longrightarrow)\text{NH}_2, -C(\Longrightarrow)\text{NH} \\ (\text{CH}_3), -C(\Longrightarrow)\text{N(CH}_3)_2\text{ and }-C(\Longrightarrow)\text{NH}_2. \end{array}$

More preferably, R_5 is selected from G^1 , G^2 , G^3 - G^4 , G^5 , 5 , 6 - G^7 , G^8 , G^9 , G^{10} - G^{11} , G^{12} , G^{13} , G^{14} , G^{15} and G^{16} .

More preferably again, R_5 is selected from G^1 , G^2 , G^5 , G^6 - G^8 , G^9 , G^{10} - G^{11} , G^{12} , G^{14} , G^{15} and G^{16} .

More favourably again, R_5 is selected from G^2 , G^5 , G^6 - G^7 , G^8 , G^9 , G^{10} - G^{11} , G^{14} , G^{16} .

Most preferably, R_5 is selected from G^2 , G^5 , G^8 and G^{10} - G^{11} .

R₆ is selected from hydrogen and SH.

Most preferably, R₆ is hydrogen.

In one group of compounds, R₆ is SH.

R₇ is hydrogen, halogen or C₁-C₄ alkyl.

Preferably, R_7 is hydrogen or C_1 - C_4 alkyl.

Most preferably, R₇ is hydrogen.

R₈ and R₉, independently from each other, are hydrogen, 20 halogen, cyano, C₁-C₁₂ alkyl, C₂-C₁₂ alkenyl, C₂-C₁₂ alkynyl, C_1 - C_{12} alkoxy, formyl, C_2 - C_{12} alkylcarbonyl, C_3 - C_{12} alkenylcarbonyl, carboxy, C_2 - C_{12} alkoxycarbonyl and C_4 - C_{12} alkenyloxycarbonyl, or C_1 - C_{12} alkyl, C_2 - C_{12} alkenyl, $C_2\text{-}C_{12}\,\text{alkynyl}, C_1\text{-}C_{12}\,\text{alkoxy}, C_2\text{-}C_{12}\,\text{alkylcarbonyl}, C_3\text{-}C_{12}$ alkenylcarbonyl, C2-C12 alkoxycarbonyl and C4-C12 alkenyloxycarbonyl mono- to polysubstituted by substituents independently selected from the group consisting of halogen, cyano, nitro, hydroxy, mercapto, C1-C6 alkyl, C1-C6 haloalkyl, C_1 - C_6 alkoxy, C_1 - C_6 haloalkoxy, C_1 - C_6 alkylthio, 30 C₁-C₆ alkylsulfinyl and C₁-C₆ alkylsulfonyl; or R₈ and R₉ together from a C2-C8 alkylene bridge which may optionally be mono- to polysubstituted by substituents independently selected from the group consisting of halogen, cyano, C1-C6 alkyl and C₁-C₆ haloalkyl; or R₈ and R₉, independently from 35 each other, are the groups A-, A-O— or A-(C_1 - C_6 alkyl)-.

 R_{10} is H, $C_1\text{-}C_4$ alkyl, $C_2\text{-}C_4$ alkenyl or $C_1\text{-}C_4$ haloalkyl. R_{13} is hydrogen, $C_1\text{-}C_6$ alkyl, $C_1\text{-}C_6$ haloalkyl, $C_3\text{-}C_6$ alkenyl, $C_3\text{-}C_6$ haloalkenyl, $C_3\text{-}C_6$ eycloalkyl, $C_3\text{-}C_8$ halocycloalkyl, phenyl and benzyl, or is phenyl and benzyl mono- to polysubstituted by halogen, cyano, hydroxy, $C_1\text{-}C_6$ alkyl, $C_1\text{-}C_6$ haloalkyl or $C_1\text{-}C_6$ alkoxy.

 R_{14} and R_{15} , independently of each other, are $C_1\text{-}C_6$ alkyl, $C_3\text{-}C_8$ cycloalkyl, $C_1\text{-}C_6$ haloalkyl, $C_3\text{-}C_8$ halocycloalkyl, $C_2\text{-}C_6$ alkenyl, $C_2\text{-}C_6$ haloalkenyl, $C_2\text{-}C_6$ alkynyl, benzyl or 45 phenyl, or benzyl or phenyl independently of each other, substituted by substituents selected from the group consisting of halogen, cyano, hydroxy, $C_1\text{-}C_6$ alkyl, $C_1\text{-}C_6$ haloalkyl and $C_1\text{-}C_6$ alkoxy.

 $R_{51},\,R_{52},\,R_{53},$ independently of each other, are halogen, $_{50}$ cyano, $C_{1}\text{-}C_{6}$ alkyl, $C_{2}\text{-}C_{6}$ alkenyl, $C_{3}\text{-}C_{8}$ cycloalkyl, $C_{5}\text{-}C_{8}$ cycloalkenyl, $C_{2}\text{-}C_{6}$ alkynyl, $C_{1}\text{-}C_{6}$ alkoxy, benzyl or phenyl.

 R_{54}, R_{55}, R_{56} , independently of each other, are C_1 - C_6 alkyl, C_3 - C_6 alkenyl, C_3 - C_8 cycloalkyl, C_3 - C_6 alkynyl, benzyl or phenyl.

 R_{57} and R_{58} , independently of each other, are hydrogen, $C_1\text{-}C_6$ alkyl, $C_1\text{-}C_6$ haloalkyl, $C_3\text{-}C_6$ alkenyl, $C_3\text{-}C_6$ haloalkenyl, $C_3\text{-}C_6$ alkynyl, $C_3\text{-}C_8$ eycloalkyl, $C_3\text{-}C_8$ halocycloalkyl, phenyl or benzyl, where phenyl or benzyl for their part may be mono- to polysubstituted on the phenyl ring by substituents of independently selected from the group consisting of halogen, cyano, hydroxy, $C_1\text{-}C_6$ alkyl, $C_1\text{-}C_6$ haloalkyl and $C_1\text{-}C_6$ alkoxy, or R_{57} and R_{58} together with their interconnecting nitrogen atom are aziridino, azetidino, pyrazolino, pyrazolidino, pyrrolino, pyrrolidino, imidazolidino, imidazolidino, triazolino, tetrazolino, piperazino, piperidino, morpholino, thiomorpholino, each of which, in turn, may be mono- or

polysubstituted by substituents selected from the group consisting of methyl, halogen, cyano.

 R_{59} is hydrogen, C_1 - C_6 alkyl, C_1 - C_6 haloalkyl, C_3 - C_6 alkenyl, C_3 - C_6 haloalkenyl, C_3 - C_6 alkynyl, C_3 - C_8 cycloalkyl, C_3 - C_8 halocycloalkyl, benzyl and phenyl, and benzyl and phenyl mono- to polysubstituted by halogen, cyano, hydroxy, C_1 - C_6 alkyl, C_1 - C_6 haloalkyl or C_1 - C_6 alkoxy.

 R_{60} is hydrogen, C_1 - C_6 alkyl, C_3 - C_8 cycloalkyl, C_1 - C_6 haloalkyl, C_3 - C_8 halocycloalkyl, C_2 - C_6 alkenyl, C_2 - C_6 haloalkenyl, C_2 - C_6 alkynyl, benzyl or phenyl, or benzyl or phenyl mono- to polysubstituted by substituents independently selected from the group consisting of halogen, cyano, hydroxy, C_1 - C_6 alkyl, C_1 - C_6 haloalkyl and C_1 - C_6 alkoxy;

 R_{62} is hydrogen, C_1 - C_6 alkyl, C_3 - C_8 cycloalkyl, C_1 - C_6 haloalkyl, C_3 - C_8 halocycloalkyl, C_3 - C_6 alkenyl, C_3 - C_6 alkynyl, benzyl or phenyl, or benzyl or phenyl mono- to polysubstituted by substituents independently selected from the group consisting of halogen, cyano, hydroxy, C_1 - C_6 alkyl, C_1 - C_6 haloalkyl and C_1 - C_6 alkoxy.

 $\rm G^1$ is a $\rm C_8$ - $\rm C_{10}$ fused bicyclic ring system which may be saturated or comprise one carbon-carbon double bond and is optionally substituted by one or more groups independently selected from hydroxyl, $\rm C_1$ - $\rm C_4$ alkyl, $\rm C_1$ - $\rm C_4$ alkoxy, halogen, $\rm C_1$ - $\rm C_4$ haloalkyl and cyano.

More preferably, G^1 is a C_9 - C_{10} fused bicyclic ring system which may be saturated or comprise one carbon-carbon double bond and is optionally substituted by one or more groups independently selected from hydroxyl, C_1 - C_4 alkyl, C_1 - C_4 alkoxy, halogen, C_1 - C_4 haloalkyl and cyano.

More preferably again, G^{Γ} is a C_9 - C_{10} fused bicyclic ring system which may be saturated or comprise one carbon-carbon double bond and is optionally substituted by one or more groups independently selected from C_1 - C_4 alkyl, fluorine, methoxy and C_1 - C_4 fluoroalkyl.

More favourably, G^1 is a saturated C_9 - C_{10} fused bicyclic ring system which is optionally substituted by one or more groups independently selected from C_1 - C_4 alkyl, fluoro, methoxy and C_1 - C_4 fluoroalkyl.

More favourably again, G^1 is a saturated C_{10} fused bicyclic ring system which is optionally substituted by one or more groups independently selected from C_1 - C_4 alkyl, fluorine, methoxy and C_1 - C_4 fluoroalkyl.

Most preferably, G^1 is a saturated C_{10} fused bicyclic ring system.

G² is C₃-C₆ cycloalkenyl, which is optionally substituted by one or more groups independently selected from halogen, CN, NO₂, OH, SH, CHO, COOH, tri(C₁-C₆-alkyl)silyl, ethyl, n-propyl, iso-propyl, n-butyl, iso-butyl, sec-butyl, tert-butyl, n-pentyl, —CH(CH₃)—CH₂—CH₂—CH₃, —CH—CH
(CH₃)—CH₂—CH₃, —CH₂—CH₂—CH(CH₃)—CH₃,
—CH₂—CH₂—CH(CH₃)₂, —CH(CH₃)—CH(CH₃)₂,
C₂-C₆ haloalkyl, C₃-C₆ cycloalkyl, C₃-C₆ halocycloalkyl,
C₂-C₆ alkenyl, C₂-C₆ haloalkenyl, C₁-C₆ alkoxy, C₁-C₆ haloalkoxy, C₂-C₇ alkylcarbonyl, C₂-C₇ alkoxycarbonyl,
C₄-C₇ alkenyloxycarbonyl, C₄-C₇ alkynyloxycarbonyl,
C₁-C₆ alkylthio, C₁-C₆ alkylsulfinyl, C₁-C₆ alkylsulfonyl,
—C(—O)NH₂, —C(—O)NH(CH₃), —C(—O)N(CH₃)₂ and
—C(—S)NH₂;

More preferably again, G^2 is C_3 - C_6 cycloalkenyl, which is optionally substituted by one or more groups independently selected from halogen, ethyl, n-propyl, iso-propyl, n-butyl, iso-butyl, sec-butyl, tert-butyl, n-pentyl, —CH(CH₃)—CH₂—CH₃, —CH—CH(CH₃)—CH₂—CH₃, —CH—CH(CH₃)—CH₂—CH₄—CH₄—CH₂—CH₄—CH₄—CH₅, —CH₂—CH₂—CH₄—CH₅, —CH₂—CH₂—CH₄—CH₅, —CH₂—CH₆ alkylthio.

Favourably, G² is C₅-C₆ cycloalkenyl, which is optionally substituted by one or more groups independently selected from halogen, ethyl, n-propyl, iso-propyl, n-butyl, iso-butyl, sec-butyl, tert-butyl, n-pentyl, —CH(CH₃)—CH₂—CH₂-CH₃, —CH—CH(CH₃)—CH₂—CH₃, —CH₂—CH₂—CH 5 (CH_3) — CH_3 , — CH_2 — CH_2 — $CH(CH_3)_2$, — $CH(CH_3)$ — $CH(CH_3)_2$, C_2 - C_6 haloalkyl and C_1 - C_6 alkoxy.

More favourably, G^2 is a C_5 - C_6 cycloalkenyl group optionally substituted by one or more groups independently selected from fluorine, ethyl, n-propyl, iso-propyl, n-butyl, iso-butyl, 10 sec-butyl, tert-butyl.

More favourably again, G² is a C₅-C₆ cycloalkenyl group optionally substituted by one or more fluorine atoms.

Most preferably, G^2 is a C_5 - C_6 cycloalkenyl group.

In one group of compounds, G^2 is a C_5 - C_6 cycloalkenyl 15 group optionally substituted one or more groups selected from ethyl, n-propyl, iso-propyl, n-butyl, iso-butyl, sec-butyl, tert-butyl, n-pentyl, $-CH(CH_3)-CH_2-CH_2-CH_3$ $-CH-CH(CH_3)-CH_2-CH_3$, —CH,—CH,—CH (CH_3) — CH_3 , — CH_2 — CH_2 — $CH(CH_3)_2$, — -CH(CH₃)— 20 $CH(CH_3)_2$, C_2 - C_6 haloalkyl and C_1 - C_6 alkoxy.

Preferably in this group of compounds, G² is a C₅-C₆ cycloalkenyl group optionally substituted one or more groups selected from ethyl, n-propyl, iso-propyl, n-butyl, iso-butyl, sec-butyl, tert-butyl.

G³ is phenyl, which is optionally substituted by one or more groups independently selected from hydroxyl, C₁-C₄ alkyl, C_1 - C_4 haloalkyl, C_2 - C_4 alkenyl, C_2 - C_4 alkynyl, C_1 - C_4 alkoxy, halogen and cyano, wherein the alkyl groups are optionally substituted by one or more halogen.

More preferably again, G³ is phenyl, which is optionally substituted by one or more groups independently selected from hydroxyl, C₁-C₄ alkyl, C₁-C₄ fluoroalkyl, C₁-C₄ alkoxy and halogen.

More favourably again, G³ is phenyl, which is optionally 35 substituted by one or more groups independently selected from hydroxyl, C₁-C₄ alkyl, CHF₂, CF₃, C₁-C₄ alkoxy and

Yet more favourably, G³ is phenyl, which is optionally substituted by one or more groups independently selected 40 from C₁-C₄ alkyl, CHF₂, CF₃, C₁-C₄ alkoxy and halogen.

Most preferably, G³ is phenyl.

G⁴ is C₃-C₁₂ cycloalkyl which is optionally substituted by one or more groups independently selected from hydroxyl, C₁-C₄ alkyl, C₂-C₄ alkenyl, C₂-C₄ alkynyl, C₁-C₄ alkoxy, 45 halogen and cyano, wherein the alkyl groups are optionally substituted by one or more halogen.

More preferably again, G⁴ is C₅-C₆ cycloalkyl which is optionally substituted by one or more groups independently selected from hydroxyl, C₁-C₄ alkyl, C₂-C₄ alkenyl, C₂-C₄ 50 alkynyl, C₁-C₄ alkoxy, halogen and cyano, wherein the alkyl groups are optionally substituted by one or more halogen.

More favourably again, G^4 is C_5 - C_6 cycloalkyl which is optionally substituted by one or more groups independently selected from hydroxyl, C₁-C₄ alkyl, C₂-C₄ alkenyl, C₂-C₄ 55 which is optionally substituted by one or more halogen. alkynyl, C₁-C₄ alkoxy and halogen.

Yet more favourably, G^4 is C_5 - C_6 cycloalkyl which is optionally substituted by one or more groups independently selected from C_1 - C_4 alkyl, C_1 - C_4 alkoxy and halogen.

Yet more favourably still, G⁴ is cyclohexyl or cyclopentyl. 60 Most preferably, G⁴ is cyclohexyl.

G⁵ is C₃-C₇ cycloalkyl, which is optionally substituted by one or more groups independently selected from halogen, CN, NO₂, OH, SH, CHO, COOH, tri(C₁-C₆-alkyl)silyl, ethyl, n-propyl, iso-propyl, n-butyl, iso-butyl, sec-butyl, tert-butyl, n-pentyl, —CH(CH₃)—CH₂—CH₂—CH₃, (CH₃)—CH₂—CH₃, $-CH_2-CH_2-CH(CH_3)-CH_3$

 $--CH(CH_3)--CH(CH_3)_2$ $-CH_2-CH_2-CH(CH_3)_2$, C2-C6 haloalkyl, C3-C6 cycloalkyl, C3-C6 halocycloalkyl, C2-C6 alkenyl, C2-C6 haloalkenyl, C1-C6 alkoxy, C1-C6 haloalkoxy, C₃-C₆-alkenyloxy, C₂-C₇ alkylcarbonyl, C₂-C₇ alkoxycarbonyl, C_4 - C_7 alkenyloxycarbonyl, C_4 - C_7 alkynyloxycarbonyl, C₁-C₆ alkylthio, C₁-C₆ alkylsulfinyl, C₁-C₆ alkylsulfonyl, phenoxy, $-C(=O)NH_2$, $-C(=O)NH(CH_3)$, $-C(=O)N(CH_3)_2$ and $-C(=S)NH_2$.

More preferably, G⁵ is C₃-C₇ cycloalkyl, which is optionally substituted by one or more groups independently selected from halogen, ethyl, n-propyl, iso-propyl, n-butyl, iso-butyl, sec-butyl, tert-butyl, n-pentyl, —CH(CH₃)—CH₂—CH₂-CH₃, —CH—CH(CH₃)—CH₂—CH₃, —CH₂—CH₂—CH (CH_3) — CH_3 , — CH_2 — CH_2 — $CH(CH_3)_2$, — $CH(CH_3)$ — $CH(CH_3)_2$, C_2 - C_6 haloalkyl, C_1 - C_6 alkoxy, C_3 - C_4 alkenyloxy, phenoxy and C_1 - C_6 alkylthio.

More preferably again, G⁵ is C₃-C₇ cycloalkyl, which is substituted by one or more groups independently selected from ethyl, n-propyl, iso-propyl, n-butyl, iso-butyl, sec-butyl, tert-butyl, n-pentyl, $-CH(CH_3)-CH_2-CH_2-CH_3$ -CH-CH(CH₃)-CH₂<math>-CH₃, $-CH_2-CH_2-CH$ (CH_3) — CH_3 , — CH_2 — CH_2 — $CH(CH_3)_2$, — $CH(CH_3)$ — CH(CH₃)₂, C₂-C₆ haloalkyl, C₁-C₆ alkoxy, C₃-C₄-alkenyloxy, phenoxy and C_1 - C_6 alkylthio.

More preferably still, G⁵ is C₅-C₇ cycloalkyl, which is substituted by one or more groups independently selected from ethyl, n-propyl, iso-propyl, n-butyl, iso-butyl, sec-butyl, tert-butyl, n-pentyl, $-CH(CH_3)-CH_2-CH_2-CH_3$ -CH-CH (CH_3) $-CH_2$ $-CH_3$, $-CH_2-CH_2-CH$ (CH_3) — CH_3 , — CH_2 — CH_2 — $CH(CH_3)_2$, — $CH(CH_3)$ — CH(CH₃)₂, C₁-C₄ alkoxy, C₃-C₄-alkenyloxy, phenoxy and C_2 - C_6 haloalkyl.

More favourably again, G⁵ is C₅-C₆ cycloalkyl, which is substituted by one or more groups independently selected from ethyl, n-propyl, iso-propyl, n-butyl, iso-butyl, sec-butyl, tert-butyl, $-CH(CH_3)-CH_2-CH_2-CH_3$ n-pentyl, $-CH-CH(CH_3)-CH_2-CH_3$, (CH_3) — CH_3 , — CH_2 — CH_2 — $CH(CH_3)_2$, — $CH(CH_3)$ -CH(CH₃)₂ and C₂-C₆ haloalkyl.

Yet more favourably, G⁵ is C₅-C₆ cycloalkyl, which is substituted by one or more groups independently selected from ethyl, n-propyl, iso-propyl, n-butyl, iso-butyl, sec-butyl, tertbutyl, n-pentyl, —CH(CH₃)—CH₂—CH₂—CH₃, —CH- $CH(CH_3)$ — CH_2 — CH_3 , — CH_2 — CH_2 — $CH(CH_3)$ — CH_3 , $-CH_2$ — CH_2 — $CH(CH_3)_2$ — $CH(CH_3)$ — $CH(CH_3)_2$, CHF_2 and CF₃.

Most preferably, G⁵ is C₆ cycloalkyl, which is substituted by one or more groups independently selected from ethyl, n-propyl, iso-propyl, n-butyl, iso-butyl, sec-butyl, tert-butyl, n-pentyl, —CH(CH₃)—CH₂—CH₂—CH₃, —CH—CH (CH_3) — CH_2 — CH_3 , $-CH_2$ — $-CH_2$ — $-CH(CH_3)_2$ and $-CH(CH_3)$ — $-CH(CH_3)_2$.

In another group of compounds, G⁵ is a C₅-C₆ cycloalkyl,

More preferably in this group, G⁵ is a C₅-C₆ cycloalkyl, which is optionally substituted by one or more fluorine.

Even more preferably in this group, G⁵ is an unsubstituted C₅-C₆ cycloalkyl.

In another group of compounds, G⁵ is a C₅-C₆ cycloalkyl, which is optionally substituted by one or more groups selected from the group consisting of C₁-C₄ alkoxy, C₃-C₄alkenyloxy or phenoxy.

Preferably in this group of compounds, G⁵ is a C₅-C₆ cycloalkyl, which is optionally substituted by one or more groups selected from the group consisting of methoxy, ethoxy, C₃-C₄ alkenyloxy and phenoxy.

 G^6 is phenyl, which must be substituted by at least one fluorine and is optionally further substituted by one or more groups independently selected from halogen, CN, NO₂, OH, SH, CHO, C(=O)NH₂, C(=O)NH(CH₃), C(=O)N(CH₃)₂, C(=S)NH₂, C(=S)NH(CH₃), C(=S)N(CH₃)₂, SO₂NH₂, SO₂NH(CH₃), SO₂N(CH₃)₂, C₁-C₆ alkyl, C₁-C₆ haloalkyl, C₃-C₆ cycloalkyl, C₂-C₆ alkenyl, C₂-C₆ haloalkenyl, C₂-C₆ alkynyl, C₂-C₆ haloalkynyl, C₁-C₆ alkoxy, C₁-C₆ haloalkoxy, C₃-C₆ alkenyloxy, C₃-C₆ cycloalkoxy, C₃-C₆ haloalkenyloxy, C₃-C₆ alkylthio, C₁-C₆ haloalkylthio, C₁-C₆ haloalkylthio, C₁-C₆ haloalkylthio, C₁-C₆ haloalkylthio, C₁-C₆ haloalkylsulfinyl, C₁-C₆ haloalkylsulfonyl and C₁-C₆ haloalkylsulfonyl.

More preferably again, G^6 is phenyl, which must be substituted by at least one fluorine and is optionally further substituted by one or more groups independently selected from halogen, CN, NO_2 , OH, SH, CHO, $C(=O)NH_2$, C(=O)NH (CH_3), $C(=O)N(CH_3)_2$, $C(=S)NH_2$, $C(=S)NH(CH_3)$, $C(=S)N(CH_3)_2$, C_1-C_6 alkyl, C_1-C_6 haloalkyl, C_3-C_6 cycloalkyl, C_2-C_6 alk-20 enyl, C_2-C_6 alkenyloxy, C_3-C_6 alkynyloxy, C_1-C_6 haloalkoxy, C_3-C_6 alkenyloxy, C_3-C_6 alkylsulfonyl.

Yet more preferably, G^6 is phenyl, which must be substituted by at least one fluorine and is optionally further substituted by one or more groups independently selected from halogen, CN, C_1 - C_6 alkyl, C_1 - C_6 haloalkyl, C_3 - C_6 cycloalkyl, C_2 - C_6 alkenyl, C_2 - C_6 alkenyl, C_1 - C_6 alkoxy, C_3 - C_6 alkenyloxy and C_1 - C_6 alkylthio.

Favourably, G^6 is phenyl, which must be substituted by at least one fluorine and is optionally further substituted by one or more groups independently selected from halogen, CN, C_1 - C_6 alkyl, C_1 - C_6 haloalkyl and C_1 - C_6 alkoxy.

More favourably again, G⁶ is phenyl, which must be substituted by at least one fluorine and is optionally further substituted by one or more groups independently selected from halogen, CN, C₁-C₄ alkyl, C₁-C₄ haloalkyl and C₁-C₄ alkoxy.

Yet more favourably, G^6 is phenyl, which must be substituted by at least one fluorine and is optionally further substituted by one or more halogen, CHF₂, CF₃ and C₁-C₄ alkyl.

Most preferably, G^6 is phenyl, which must be substituted by at least one fluorine and is optionally further substituted by one or more methyl, bromine, iodine or chlorine.

In one group of compounds, G^6 is phenyl substituted at the 45 para-position by fluorine and further substituted as in the above paragraphs.

In one group of compounds, G^6 is phenyl substituted at the ortho-position by fluorine and further substituted as in the above paragraphs.

In one group of compounds, G⁶ is phenyl substituted at the meta-position by fluorine and further substituted as in the above paragraphs.

 G^7 is methylene.

G8 is

$$R^{14'}$$
 $R^{14'}$
 $R^{14'}$
 $R^{12'}$
 $R^{12'}$
 $R^{14'}$

G9 is

 G^{10} is phenyl, which is optionally substituted by one or more groups independently selected from halogen, CN, NO $_2$, OH, SH, CHO, C(=O)NH $_2$, C(=O)NH(CH $_3$), C(=O)N (CH $_3$) $_2$, C(=S)NH $_2$, C(=S)NH(CH $_3$), C(=S)N(CH $_3$) $_2$, SO $_2$ NH $_2$, SO $_2$ NH(CH $_3$), SO $_2$ N(CH $_3$) $_2$, C $_1$ -C $_6$ alkyl, C $_1$ -C $_6$ haloalkyl, C $_3$ -C $_6$ cycloalkyl, C $_2$ -C $_6$ alkenyl, C $_2$ -C $_6$ haloalky-enyl, C $_2$ -C $_6$ alkynyl, C $_2$ -C $_6$ haloalkynyl, C $_1$ -C $_6$ alkoxy, C $_3$ -C $_6$ alkoxy, C $_3$ -C $_6$ alkoxy, C $_3$ -C $_6$ alkynyloxy, C $_3$ -C $_6$ alkoxy, C $_3$ -C $_6$ haloalkoxy, C $_3$ -C $_6$ alkylthio, C $_1$ -C $_6$ alkylthio, C $_1$ -C $_6$ alkylthio, C $_1$ -C $_6$ alkylsulfinyl, C $_1$ -C $_6$ haloalkylsulfinyl, C $_1$ -C $_6$ haloalkylsulfonyl, C $_1$ -C $_6$ -Haloalkylsulfonyl, C $_1$ -C $_1$ -C $_1$ -Haloalkylsulfonyl, C $_1$ -C $_1$ -C $_1$ -Haloalkylsulfonyl, C $_1$ -C $_1$ -Haloalkylsulfonyl, C $_1$ -C $_1$ -Haloalkylsulfo

Preferably, G¹⁰ is phenyl, which is optionally substituted by one or more groups independently selected from halogen, CN, NO₂, OH, SH, CHO, C(=O)NH₂, C(=O)NH(CH₃), C(=O)N(CH₃)₂, C(=S)NH₂, C(=S)NH(CH₃), C(=S)N (CH₃)₂, SO₂NH₂, SO₂NH(CH₃), SO₂N(CH₃)₂, C₁-C₆ alkyl, C₁-C₆ haloalkyl, C₃-C₆ cycloalkyl, C₂-C₆ alkenyl, C₂-C₆ haloalkenyl, C₂-C₆ alkynyl, C₁-C₆ alkoxy, C₃-C₆ cycloalkoxy, C₃-C₆ alkenyloxy, C₃-C₆ alkynyloxy, C₃-C₆ cycloalkoxy, C₃-C₆ haloalkylthio, C₁-C₆ haloalkylthio, C₁-C₆ haloalkylthio, C₁-C₆ alkylsulfinyl, C₁-C₆ haloalkylsulfinyl, S₁-C₆ alkylsulfonyl and C₁-C₆ haloalkylsulfonyl.

More preferably, G^{10} is phenyl, which is optionally substituted by one or more groups independently selected from halogen, CN, OH, SH, CHO, C_1 - C_6 alkyl, C_1 - C_6 haloalkyl, C_3 - C_6 cycloalkyl, C_2 - C_6 alkenyl, C_2 - C_6 haloalkenyl, C_2 - C_6 alkynyl, C_1 - C_6 alkoxy, C_1 - C_6 haloalkoxy, C_3 - C_6 alkynyloxy, C_3 - C_6 cycloalkoxy, phenyl, C_1 - C_6 alkylsulfinyl and C_1 - C_6 alkylsulfonyl.

More preferably again, G¹⁰ is phenyl, which is optionally substituted by one or more groups independently selected from halogen, CN, OH, SH, CHO, methyl, ethyl, n-propyl, iso-propyl, phenyl, CH₂F, CHF₂, CF₃, CHF—CH₃, CF₂—CH₃, CF₂—CF₃, cyclopropyl, CH—CH₂, C(CH₃)—CH₂, CH—CH(CH₃), C(CH₃)—CH(CH₃), CH—CC₂, CH—CC₃, CH—CC₄, CH—CC₄, CH—CC₃, CH—CC₄, CH—CC₄, CH—CC₄, CH—CC₄, CCH, OCH (CH₃)—C—CH, SCH₃, SCH₂CH₃, S(—O)CH₃, S(—O)CH₃, S(—O)CH₃, S(—O)CH₃, S(—O)CH₃CH₃, S(—O)CH₃CH₃, S(—O)CH₃CH₃, S(—O)CH₃CH₃

CH₂CH₃, S(=O)₂CH₃ and S(=O)₂CH₂CH₃

More favourably again, G¹⁰ is phenyl, which is optionally substituted by one or more groups independently selected from halogen, CN, OH, methyl, ethyl, n-propyl, iso-propyl, CH₂F, CHF₂, CF₃, CHF—CH₃, CF₂—CH₃, CF₂—CF₃, CH=CH₂, C(CH₃)=CH₂, CH=CH(CH₃), C(CH₃)=CH(CH₃), CH=C(CH₃)₂, C(CH₃)=C(CH₃)₂, CH=CF₂, CH=CCl₂, C=CH, methoxy, phenyl, ethoxy, iso-propyloxy and OCHF₂.

Yet more favourably, G¹⁰ is phenyl, which is optionally substituted by one or more groups independently selected from halogen, CN, methyl, ethyl, n-propyl, iso-propyl, ethenyl, methoxy, ethoxy, iso-propyloxy, phenyl, CHF₂, CF₃, 65 CHF—CH₃ and OCHF₂.

Most preferably, G¹⁰ is phenyl, which is optionally substituted by one or more groups independently selected from

halogen, CN, methyl, ethyl, n-propyl, iso-propyl, ethenyl, methoxy, phenyl, CHF₂, CF₃ and CHF—CH₃.

 $\rm G^{11}$ is methylene substituted by at least one group independently selected from $\rm C_1$ -C $_4$ alkyl, $\rm C_1$ -C $_4$ haloalkyl, CN, C $_1$ -C $_4$ alkoxy and C $_1$ -C $_4$ haloalkoxy.

More preferably again, G^{11} is methylene substituted by at least one group independently selected from C_1 - C_4 alkyl, C_1 - C_4 haloalkyl, C_1 - C_4 haloalkoxy.

More favourably again, G^{11} is methylene substituted by at 10 least one group independently selected from C_1 - C_4 alkyl, C_1 - C_4 haloalkyl and C_1 - C_4 alkoxy.

Yet more favourably, G^{11} is methylene substituted by at least one group independently selected from methyl, ethyl, $_{15}$ CHF $_2$ and CF $_3$.

More favourably still, G^{11} is methylene substituted by at least one group independently selected from methyl, CF_3 and ethyl.

Most preferably, G^{11} is methylene substituted by at least one group independently selected from methyl and ethyl.

$$G^{12}$$
 is

$$R^{29'}$$
 $R^{30'}$
 $R^{31'}$
 $R^{32'}$
 $R^{32'}$
 $R^{33'}$
 $R^{33'}$

 $\rm G^{13}$ is a $\rm C_8$ -C $_{11}$ spirobicyclic system containing 0, 1 or 2 O or N atoms, wherein there are no adjacent O atoms, which is optionally substituted by one or more groups independently selected from halogen, CN, NO₂, OH, SH, CHO, COOH, tri(C $_1$ -C $_6$ -alkyl)silyl, C $_1$ -C $_6$ alkyl, C $_1$ -C $_6$ haloalkyl, C $_3$ -C $_6$ cycloalkyl, C $_3$ -C $_6$ halocycloalkyl, C $_2$ -C $_6$ alkenyl, C $_2$ -C $_6$ alkory, C $_1$ -C $_6$ alkoxy, C $_1$ -C $_6$ haloalkoxy, C $_2$ -C $_7$ alkylcarbonyl, C $_2$ -C $_7$ alkoxycarbonyl, C $_4$ -C $_7$ alkenyloxycarbonyl, C $_4$ -C $_7$ alkylbino, C $_1$ -C $_6$ alkylsulfonyl, C $_9$ -C(=O)NH2, C(=O)NH(CH $_3$), —C(=O)N(CH $_3$)2 and —C(=S)NH2.

More preferably again, G^{13} is a C_8 - C_{11} spirobicyclic system containing 0, 1 or 2 O or N atoms, wherein there are no adjacent O atoms, which is optionally substituted by one or more groups independently selected from halogen, C_1 - C_6 alkyl, C_1 - C_6 haloalkyl, C_1 - C_6 alkoxy, C_1 - C_6 alkylthio and C_1 - C_6

Most preferably, G^{13} is a C_8 - C_{11} spirobicyclic system containing 0, 1 or 2 O or N atoms, wherein there are no adjacent O atoms, which is optionally substituted by one or more 55 groups independently selected from halogen, C_1 - C_4 alkyl, C_1 - C_4 alkoxy and \longrightarrow O.

$$G^{14}$$
 is

 G^{15} is

G16 is

$$G^{17} \xrightarrow[R^{68'}]{R^{68'}} R^{68'} R^{68'} R^{61'} \xrightarrow[R^{68'}]{H^{68'}} \#.$$

G¹⁷ is a five- to six-membered monocyclic heteroaromatic 30 ring system which can contain 1 to 4 members selected from the group consisting of N, N(R⁶⁹), O and S (for example, pyridine, pyrimidine, furan, pyrrole, thiazole, oxazole, pyrazole, imidazole, oxadiazole, thiadiazole or tetrazole), it not being possible for each ring system to contain —O—O—, —S—S— and —O—S-fragments, and it being possible for the five- to six-membered ring system to be itself mono- or polysubstituted by groups selected from the group consisting of halogen, CN, NO₂, OH, SH, CHO, C(=O)NH₂, C(=O) $NH(CH_3)$, $C(=O)N(CH_3)_2$, $C(=S)NH_2$, $C(=S)NH(CH_3)$, $C(=S)N(CH_3)_2$, SO_2NH_2 , $SO_2NH(CH_3)$, $SO_2N(CH_3)_2$, C₁-C₆ alkyl, C₁-C₆ haloalkyl, C₃-C₆ cycloalkyl, C₂-C₆ alkenyl, $\mathrm{C_2\text{-}C_6}$ haloalkenyl, $\mathrm{C_2\text{-}C_6}$ alkynyl, $\mathrm{C_2\text{-}C_6}$ haloalkynyl, C₁-C₆ alkoxy, C₁-C₆ haloalkoxy, C₃-C₆ alkenyloxy, C₃-C₆ haloalkenyloxy, C₃-C₆ alkynyloxy, C₃-C₆ cycloalkoxy, C₃-C₆ halocycloalkoxy, C₁-C₆ alkylthio, C₁-C₆ haloalkylthio, C₁-C₆ alkylsulfinyl, C₁-C₆ haloalkylsulfinyl, C₁-C₆ alkylsulfonyl and C₁-C₆ haloalkylsulfonyl.

More favourably again, G^{17} is a five- to six-membered monocyclic heteroaromatic ring system which can contain 1 to 4 members selected from the group consisting of N, N(R^{69}), O and S, it not being possible for each ring system to contain -O-O-, -S-S- and -O-S- fragments, and it being possible for the five- to six-membered-membered ring system to be itself mono- or polysubstituted by groups selected from the group consisting of halogen, CN, C_1 - C_4 alkyl, C_1 - C_4 haloalkyl, C_1 - C_4 alkoxy, C_1 - C_4 haloalkyl, wherein the phenyl or benzyl are optionally substituted by halogen, CN, C_1 - C_4 alkyl or C_1 - C_4 haloalkyl.

Yet more favourably, G¹⁷ is a five- to six-membered monocyclic heteroaromatic ring system which can contain 1 or 2
members selected from the group consisting of N, N(R⁶⁹), O
and S, it not being possible for each ring system to contain
—O—O—, —S—S— and —O—S— fragments, and it
being possible for the five- to six-membered ring system to be
itself mono- or polysubstituted by groups selected from the
group consisting of halogen, CN, C₁-C₄ alkyl, C₁-C₄
haloalkyl, C₁-C₄ alkoxy, C₁-C₄ haloalkoxy, phenyl or benzyl,

30

wherein the phenyl or benzyl are optionally substituted by halogen, CN, C_1 - C_4 alkyl, C_1 - C_4 haloalkyl.

Most preferably, G¹⁷ is a five- to six-membered monocyclic heteroaromatic ring system which can contain 1 or 2 members selected from the group consisting of N, O and S, it 5 not being possible for each ring system to contain —O—O--S—S—and—O—S—fragments, and it being possible for the five- to six-membered ring system to be itself mono- or polysubstituted by groups selected from the group consisting of halogen, CN, C₁-C₄ alkyl, C₁-C₄ haloalkyl, C₁-C₄ alkoxy, 10 C₁-C₄ haloalkoxy, phenyl or fluorophenyl. In one group of compounds, G¹⁷ is selected from pyridine, pyrimidine, furan, pyrrole, thiazole, oxazole, pyrazole, imidazole, oxadiazole, thiadiazole or tetrazole each of which may be substituted by one or more groups selected from the group consisting of 15 halogen, CN, NO2, OH, SH, CHO, C(=O)NH2, C(=O)NH (CH₃), C(=O)N(CH₃)₂, C(=S)NH₂, C(=S)NH(CH₃), C(=S)N(CH₃)₂, SO₂NH₂, SO₂NH(CH₃), SO₂N(CH₃)₂, C₁-C₆ alkyl, C₁-C₆ haloalkyl, C₃-C₆ cycloalkyl, C₂-C₆ alkenyl, C_2 - C_6 haloalkenyl, C_2 - C_6 alkynyl, C_2 - C_6 haloalkynyl, 20 $\begin{array}{l} C_1\text{-}C_6 \text{ alkoxy, } C_1\text{-}C_6 \text{ haloalkoxy, } C_3\text{-}C_6 \text{ alkenyloxy, } C_3\text{-}C_6 \\ \text{haloalkenyloxy, } C_3\text{-}C_6 \text{ alkynyloxy, } C_3\text{-}C_6 \text{ cycloalkoxy,} \\ \end{array}$ C_3 - C_6 halocycloalkoxy, C_1 - C_6 alkylthio, C_1 - C_6 haloalkylthio, C₁-C₆ alkylsulfinyl, C₁-C₆ haloalkylsulfinyl, C₁-C₆ alkylsulfonyl and C_1 - C_6 haloalkylsulfonyl.

More favourably again in this group, G^{17} is selected from pyridine, pyrimidine, furan, pyrrole, thiazole, oxazole, pyrazole, imidazole, oxadiazole, thiadiazole or tetrazole each of which may be substituted by one or more groups selected from the group consisting of halogen, CN, C_1 - C_4 alkyl, C_1 - C_4 30 haloalkyl, C_1 - C_4 alkoxy, C_1 - C_4 haloalkoxy, phenyl or benzyl, wherein the phenyl or benzyl are optionally substituted by halogen, CN, C_1 - C_4 alkyl, C_1 - C_4 haloalkyl.

Yet more favourably in this group, G^{17} is selected from pyridine, pyrimidine, furan, pyrrole, thiazole, oxazole, pyrazole, or imidazole each of which may be substituted by one or more groups selected from the group consisting of halogen, CN, C_1 - C_4 alkyl, C_1 - C_4 haloalkyl, C_1 - C_4 alkoxy, C_1 - C_4 haloalkoxy, phenyl or benzyl, wherein the phenyl or benzyl are optionally substituted by halogen, CN, C_1 - C_4 alkyl, C_1 - C_4 40 haloalkyl.

Most preferably in this group, G^{17} is selected from pyridine, furan, pyrrole, thiazole or oxazole or imidazole each of which may be substituted by one or more groups selected from the group consisting of halogen, CN, C_1 - C_4 alkyl, C_1 - C_4 45 haloalkyl, C_1 - C_4 alkoxy, C_1 - C_4 haloalkoxy, phenyl or fluorophenyl.

In another group of compounds, G^{17} is a five- to six-membered monocyclic heteroaromatic ring system which can contain 1 member selected from the group consisting of N and O 50 (for example, pyridine, furan or pyrrole), it being possible for the five- to six-membered ring system to be itself mono- or polysubstituted by groups selected from the group consisting of halogen, CN, C_1 - C_4 alkyl, C_1 - C_4 haloalkyl, C_1 - C_4 alkoxy or C_1 - C_4 haloalkoxy.

Preferably in this group, G¹⁷ is pyridine, furan or pyrrole each of which may be mono- or polysubstituted by groups selected from the group consisting of halogen, CN, C₁-C₄ alkyl, C₁-C₄ haloalkyl, C₁-C₄ alkoxy or C₁-C₄ haloalkoxy.

In another group of compounds, G¹⁷ is a five- to six-membered monocyclic heteroaromatic ring system which can contain 2 members selected from the group consisting of N, O and S, (for example oxazole or thiazole) it not being possible for each ring system to contain —O—O—, —S—S— and —O—S— fragments, and it being possible for the five- to 65 six-membered ring system to be itself mono- or polysubstituted by groups selected from the group consisting of halo-

gen, CN, C_1 - C_4 alkyl, C_1 - C_4 haloalkyl, C_1 - C_4 alkoxy, C_1 - C_4 haloalkoxy, phenyl or fluorophenyl.

Preferably in this group, G^{17} is oxazole or thiazole each of which may be mono- or polysubstituted by groups selected from the group consisting of halogen, CN, C_1 - C_4 alkyl, C_1 - C_4 haloalkyl, C_1 - C_4 alkoxy, C_1 - C_4 haloalkoxy, phenyl or fluorophenyl.

 $R^{1'}$ is selected from the group consisting of hydrogen, fluorine, C_1 - C_4 alkyl, C_1 - C_4 haloalkyl;

R^{2'}, R^{3'}, R^{4'} and R^{5'} are selected, independently of each other, from the group consisting of hydrogen, fluorine, C₁-C₄ alkyl, C₁-C₄ haloalkyl, C₁-C₄ alkoxy and C₁-C₄ alkylthio.

More preferably again, R^1 is selected from the group consisting of hydrogen, fluorine, C_1 - C_4 alkyl and C_1 - C_4 fluoroalkyl;

R^{2'}, R^{3'}, R^{4'} and R^{5'} are selected, independently of each other, from the group consisting of hydrogen, fluorine, C₁-C₄ alkyl, C₁-C₄ haloalkyl, C₁-C₄ alkoxy and C₁-C₄ alkylthio.

Yet more preferably, R^{1'}, R^{2'}, R^{3'}, R^{4'} and R^{5'} are selected, independently of each other, from the group consisting of hydrogen, fluorine, methyl, ethyl, CH₂F, CHF₂, CF₃, CHF—CH₃, CF₂—CH₃, methoxy, ethoxy and S—CH₃S—CH₂CH₃.

More favourably again, R¹ is selected from the group consisting of hydrogen, fluorine, methyl, CH₂F and CF₃;

R^{2'}, R^{3'}, R^{4'} and R^{5'} are selected, independently of each other, from the group consisting of hydrogen, fluorine, methyl, CH₂F, CF₃ and methoxy.

Most preferably, R^{1'}, R^{2'}, R^{3'}, R^{4'} and R^{5'} are each hydrogen.

 $R^{11'}, R^{12'}, R^{13'}$ and $R^{14'}$ are selected, independently of each other, from the group consisting of hydrogen, halogen, CN, NO_2, OH, SH, CHO, C(=O)NH_2, C(=O)NH(CH_3), C(=O)N(CH_3)_2, C(=S)NH_2, C(=S)NH(CH_3)_2, C(=S)N(CH_3)_2, C_1-C_6 alkyl, C_1-C_6 haloalkyl, C_3-C_6 cycloalkyl, C_2-C_6 haloalkyl, C_2-C_6 haloalkyl, C_2-C_6 haloalkynyl, C_2-C_6 haloalkynyl, C_1-C_6 alkynyl, C_2-C_6 haloalkynyl, C_3-C_6 cycloalkyl, C_3-C_6 haloalkenyloxy, C_3-C_6 haloalkenyloxy, C_3-C_6 haloalkenyloxy, C_3-C_6 haloalkenyloxy, C_3-C_6 haloalkenyloxy, C_3-C_6 haloalkyllhio, C_1-C_6 haloalkyllhio, C_1-C_6 haloalkyllhio, C_1-C_6 haloalkyllhio, C_1-C_6 haloalkyllhio, C_1-C_6 haloalkylsulfinyl, C_1-C_6 haloalkylsulfinyl, C_1-C_6 haloalkylsulfonyl and C_1-C_6 haloalkylsulfonyl.

More preferably again, R¹¹, R¹², R¹³ and R¹⁴ are selected, independently of each other, from the group consisting of hydrogen, cyano, halogen, C₁-C₆ alkyl, C₁-C₆ haloalkyl, C₁-C₆ alkoxy and C₁-C₆ alkylthio.

More favourably again, R¹¹, R¹², R¹³ and R¹⁴ are

More favourably again, R^{11} , R^{12} , R^{13} and R^{14} are selected, independently of each other, from the group consisting of hydrogen, halogen, cyano, C_1 - C_4 alkyl, CHF_2 , CF_3 and C_1 - C_4 alkoxy.

Most preferably, R¹¹, R¹², R¹³ and R¹⁴ are selected, independently of each other, from the group consisting of hydrogen, halogen, cyano, C₁-C₄ alkyl and C₁-C₄ alkoxy.

R^{15'} and R^{16'} are independently selected from the group consisting of hydrogen, halogen, cyano, C₁-C₄ alkyl, C₁-C₄ haloalkyl and C₃-C₆ cycloalkyl; each R^{17'}, R^{18'}, R^{19'}, R^{20'}, R^{21'} and R^{22'} are selected inde-

each R¹⁷, R¹⁸, R¹⁹, R²⁰, R²¹ and R²² are selected independently of each other, from the group consisting of hydrogen, halogen, cyano, C₁-C₄ alkyl, C₁-C₄ haloalkyl, C₁-C₄ alkoxy, C₁-C₄ haloalkoxy and C₃-C₆ cycloalkyl; R²³, R²⁴ and R²⁵ are independently selected from the

 $R^{23'}$, $R^{24'}$ and $R^{25'}$ are independently selected from the group consisting of hydrogen, halogen, cyano, C_1 - C_4 alkyl, C_1 - C_4 haloalkyl, C_1 - C_4 alkoxy, C_3 - C_6 cycloalkyl, C_3 - C_6 halocycloalkyl and C_1 - C_4 alkylthio.

More preferably again, R^{15'}, R^{16'}, R^{17'}, R^{18'}, R^{19'}, R^{20'}, R^{21'} and R^{22'} are independently selected from the group consisting

of hydrogen, halogen, methyl, ethyl, isopropyl, CH₂F, CHF₂, CF₃, CHF—CH₃, CF₂—CH₃ and CF₂CF₃;

R²³, R²⁴ and R²⁵ are independently selected from the group consisting of hydrogen, halogen, cyano, C₁-C₄ alkyl, C_1 - C_4 haloalkyl, C_1 - C_4 alkoxy, C_3 - C_6 cycloalkyl, C_3 - C_6 halo- 5 cycloalkyl and C_1 - C_4 alkylthio.

Favourably, R¹⁵', R¹⁶', R¹⁷', R¹⁸', R¹⁹', R²⁰', R²¹' and R²²' are independently selected from the group consisting of hydrogen, fluorine, methyl, ethyl, isopropyl, CH₂F, CHF₂, CF₃, CHF—CH₃, CF₂—CH₃, CH₂—CH₂F CH₂—CHF₂ and

 R^{23} , R^{24} and R^{25} are independently selected from the group consisting of hydrogen, halogen, cyano, C₁-C₄ alkyl, C_1 - C_4 haloalkyl, C_1 - C_4 alkoxy, C_3 - C_6 cycloalkyl, C_3 - C_6 halocycloalkyl and C₁-C₄ alkylthio.

More favourably, $R^{15'}$, $R^{16'}$, $R^{17'}$, $R^{18'}$, $R^{19'}$, $R^{20'}$, $R^{21'}$ and R²² are each independently selected from hydrogen, fluorine, methyl, ethyl, CH₂F, CHF₂ and CF₃ and isopropyl;

R²³', R²⁴' and R²⁵' are independently selected from the 20 group consisting of hydrogen, halogen, cyano, C₁-C₄ alkyl, C₁-C₄ haloalkyl, C₁-C₄ alkoxy, C₃-C₆ cycloalkyl, C₃-C₆ halocycloalkyl and C_1 - C_4 alkylthio.

More favourably again, R^{15'}, R^{16'}, R^{17'}, R^{18'}, R^{19'}, R^{20'}, R^{21'} and R²² are each independently selected from hydrogen, 25 fluorine, methyl, ethyl, CH₂F, CHF₂, CF₃ and isopropyl;

R^{23'}, R^{24'} and R^{25'} are independently selected from the group consisting of hydrogen, methyl, fluorine, chlorine, bromine, ethyl, CH₂F, CHF₂ and CF₃ and isopropyl.

Yet more favourably, R^{15'}, R^{16'}, R^{17'}, R^{18'}, R^{19'}, R^{20'}, R^{21'} 30

and R²² are each independently selected from hydrogen, fluorine, methyl, ethyl, CH₂F, CHF₂, CF₃ and isopropyl;

R²³', R²⁴' and R²⁵' are each independently selected from hydrogen, fluorine, chlorine, bromine, methyl, ethyl and iso-

 $\widehat{Most} \ preferably, R^{15'}, R^{16'}, R^{17'}, R^{18'}, R^{19'}, R^{20'}, R^{21'}, R^{22'}.$ R^{23'}, R^{24'} and R^{25'} are each independently selected from hydrogen, methyl, ethyl and isopropyl.

In one group of compounds, R¹⁵ and R¹⁶ are each independently selected from the group consisting of hydrogen, 40 methyl, F and CF₃

In this group, $R^{15'}$, $R^{16'}$, $R^{17'}$, $R^{18'}$, $R^{19'}$, $R^{20'}$, $R^{21'}$ and $R^{22'}$ are most preferably each hydrogen.

In another preferred group of compounds, $R^{15'}$ is as described above and $R^{16'}, R^{17'}, R^{18'}, R^{19'}, R^{20'}, R^{21'}$ and $R^{22'}$ 45 are each hydrogen.

In another group of compounds, R²³', R²⁴' and R²⁵' are independently selected from the group consisting of hydrogen, fluorine, chlorine, bromine, methyl, ethyl, isopropyl, CH₂F, CHF₂, CF₃, CHF—CH₃, CF₂—CH₃, CH₂—CH₂F 50 and R⁴⁴ are each hydrogen, and R³⁷ is as defined above.

 $\begin{array}{lll} & \text{CH}_2-\text{CHF}_2 \text{ and CH}_2-\text{CF}_3. \\ & \text{R}^{26'} \text{ is C}(\text{R}^{36'})_2, \text{N-O-C}_1\text{-C}_4\text{-alkyl}, \text{N-O-C}_2\text{-C}_4\text{-alk-enyl}, \text{N-O-C}_2\text{-C}_4 \text{ alkynyl}, \text{N-O-C}_1\text{-C}_4 \text{ haloalkyl}, \text{N-O-Phenyl}, \text{N-$ N—O-halophenyl, O wherein the N—O-benzyl and N—O- 55 phenyl may be substituted by one or more groups independently selected from the group consisting of halogen, methyl and halomethyl.

Most preferably, $R^{26'}$ is N—OH, N—O— C_1 - C_4 alkyl, N—O-phenyl, N—O-halophenyl, O or $C(R^{36'})$. $R^{27'}$, $R^{28'}$, $R^{29'}$, $R^{30'}$, $R^{31'}$, $R^{32'}$, $R^{33'}$, $R^{34'}$ and $R^{35'}$ are each

independently selected from the group consisting of hydrogen, hydroxyl, C₁-C₄ alkyl, C₂-C₄ alkenyl, C₂-C₄ alkynyl, 65 C₁-C₄ alkoxy, halogen, C₁-C₄ haloalkyl, C₂-C₄ haloalkenyl, cyano, benzyl and phenyl;

or R28' and R29' together with the two carbon atoms to which they are attached form a double bond.

More preferably again, $R^{27'}$, $R^{28'}$, $R^{29'}$, $R^{30'}$, $R^{31'}$, $R^{32'}$, $R^{33'}$. R^{34'} and R^{35'} are each independently selected from the group consisting of hydrogen, hydroxyl, C₁-C₄ alkyl, C₁-C₄ alkoxy

or R^{28'} and R^{29'} together with the two carbon atoms to which they are attached form a double bond.

More favourably again, R²⁷', R²⁸', R²⁹', R³⁰', R³¹', R³²', R^{33'}, R^{34'} and R^{35'} are each independently selected from the group consisting of hydrogen, C₁-C₄ alkyl and halogen;

or R²⁸ and R²⁹ together with the two carbon atoms to which they are attached form a double bond.

Yet more favourably R²⁷', R²⁸', R²⁹', R³⁰', R³¹', R³²', R³³'. R^{34} and R^{35} are each hydrogen or methyl;

or R28' and R29' together with the two carbon atoms to which they are attached form a double bond.

Most preferably $R^{27'}$ is hydrogen or methyl; $R^{28'},\ R^{29'},\ R^{30'},\ R^{31'},\ R^{32'},\ R^{33'},\ R^{34'}$ and $R^{35'}$ are each hydrogen; or R²⁸ and R²⁹ together with the two carbon atoms to which they are attached form a double bond.

Each R³⁶ is independently selected from hydrogen, halogen and C_1 - C_4 alkyl. $R^{37'}$ and $R^{38'}$ are selected independently of each other from

the group consisting of hydrogen, halogen, cyano, C₁-C₄ alkyl and C_1 - C_4 haloalkyl; $R^{39'}$, $R^{40'}$, $R^{41'}$, $R^{42'}$, $R^{43'}$ and $R^{44'}$ are selected independent

dently of each other from the group consisting of hydrogen, halogen, hydroxy, cyano, C₁-C₄ alkyl, C₁-C₄ haloalkyl, $\begin{array}{l} C_1\text{-}C_4 \text{ alkoxy}, C_1\text{-}C_4 \text{ haloalkoxy} \text{ and } C_1\text{-}C_4 \text{ alkylthio}. \\ \text{More preferably again, } R^{37'}, R^{38'}, R^{39'}, R^{40'}, R^{41'}, R^{42'}, R^{43'} \end{array}$

r are selected independently of each other from a group consisting of hydrogen, halogen, methyl, ethyl, isopropyl, monofluoromethyl, polyfluoromethyl, monofluoroethyl, and polyfluoroethyl.

Favourably, R³⁷′, R³⁸′, R³⁹′, R⁴⁰′, R⁴¹′, R⁴²′, R⁴³′ and R⁴⁴′ are selected independently of each other from a group consisting of hydrogen, fluorine, methyl, ethyl, isopropyl, CH₂F, CHF₂, CF₃, CHF—CH₃, CF₂—CH₃, CH₂—CH₂F CH₂-CHF₂, and CH₂—CF₃.

More favourably again, R³⁷, R³⁸, R³⁹, R⁴⁰, R⁴¹, R⁴², R⁴³ and R⁴⁴ are independently selected from the group consisting of hydrogen, fluorine, methyl and trifluoromethyl.

Yet more favourably, R³⁷, R³⁸, R³⁹, R⁴⁰, R⁴¹, R⁴², R⁴³ and R⁴⁴ are hydrogen or methyl.

Most preferably, R³⁷, R³⁸, R³⁹, R⁴⁰, R⁴¹, R⁴², R⁴³ and R⁴⁴ are hydrogen.

In one group of compounds, $R^{38'}$, $R^{39'}$, $R^{40'}$, $R^{41'}$, $R^{42'}$, $R^{43'}$

R^{45'}, R^{46'}, R^{47'}, R^{48'} and R^{49'} are selected, independently of each other, from the group consisting of hydrogen, halogen, CN, NO₂, OH, SH, CHO, C(=O)NH₂, C(=O)NH(CH₃), $C(=O)N(CH_3)_2$, $C(=S)NH_2$, $C(=S)NH(CH_3)$, C(=S)N(CH₃)₂, SO₂NH₂, SO₂NH(CH₃), SO₂N(CH₃)₂, C₁-C₆ alkyl, C_1 - C_6 haloalkyl, C_3 - C_6 cycloalkyl, C_2 - C_6 alkenyl, C_2 - C_6 haloalkenyl, C_2 - C_6 alkynyl, C_2 - C_6 haloalkynyl, C_1 - C_6 alkoxy, C₁-C₆ haloalkoxy, C₃-C₆ alkenyloxy, C₃-C₆ haloalkenyloxy, C3-C6 alkynyloxy, C3-C6 cycloalkoxy, C3-C6 halocycloalkoxy, C_1 - C_6 alkylthio, C_1 - C_6 haloalkylthio, C_1 - C_6 alkylsulfinyl, C_1 - C_6 alkylsulfinyl, C_1 - C_6 alkylsulfonyl and C₁-C₆ haloalkylsulfonyl.

More preferably again, R⁴⁵', R⁴⁶', R⁴⁷', R⁴⁸' and R⁴⁹' are independently selected from the group consisting of hydrogen, fluorine, chlorine, bromine, iodine, methyl, ethyl, isopropyl, cyclopropyl, C=CH, CH=CH₂, C(CH₃)=CH₂, CF₃, CHF₂, CH₂F, —CHF—CH₃, —CF₂—CH₃, methoxy,

ethoxy, difluoromethoxy, trifluoromethoxy, methlythio, methylsulfinyl and methylsulfonyl.

Most preferably, R^{45'}, R^{46'}, R^{47'}, R^{48'} and R^{49'} are independently selected from the group consisting of hydrogen, fluorine, chlorine, methyl, CF₃, CHF₂, CH₂F, methoxy, difluo- 5 romethoxy and trifluoromethoxy.

R⁵⁰ is selected from the group consisting of hydrogen,

fluorine, C_1 - C_4 alkyl, C_1 - C_4 haloalkyl; $R^{51'}$, $R^{52'}$, $R^{53'}$, $R^{54'}$, $R^{55'}$ and $R^{56'}$ are selected, independently of each other, from the group consisting of hydrogen, 10 fluorine, C₁-C₄ alkyl, C₁-C₄ haloalkyl, C₂-C₄ alkoxy and C_1 - C_4 alkylthio.

More preferably again, R50, is selected from the group consisting of hydrogen, fluorine, C1-C4 alkyl, C1-C4

R⁵¹', R⁵²', R⁵³', R⁵⁴', R⁵⁵' and R⁵⁶' are selected, independently of each other, from the group consisting of hydrogen, fluorine, C1-C4 alkyl, C1-C4 haloalkyl, C2-C4 alkoxy and C₁-C₄ haloalkoxy.

Favourably, $R^{50'}$, $R^{51'}$, $R^{52'}$, $R^{53'}$, $R^{54'}$, $R^{55'}$ and $R^{56'}$ are 20 selected, independently of each other, from the group consisting of hydrogen, fluorine, methyl, ethyl, CH₂F, CHF₂,

CF₃, CHF—CH₃ and CF₂—CH₃. More favourably again, $R^{50'}$, $R^{51'}$, $R^{52'}$, $R^{53'}$, $R^{54'}$, $R^{55'}$ and R⁵⁶ are selected, independently of each other, from the group 25 consisting of hydrogen, fluorine, methyl, CH₂F and CF

Most preferably, $R^{50'}$, $R^{51'}$, $R^{52'}$, $R^{53'}$, $R^{54'}$, $R^{55'}$ and $R^{56'}$ are each hydrogen.

R⁵⁷, R⁵⁸, R⁵⁹ and R⁶⁰ are selected, independently of each other, from the group consisting of hydrogen, halogen, CN, 30 NO_2 , OH, SH, CHO, $C(=O)NH_2$, $C(=O)NH(CH_3)$, C(=O) $N(CH_3)_2$, $C(=S)NH_2$, $C(=S)NH(CH_3)$, $C(=S)N(CH_3)_2$, $\mathrm{SO_2NH_2},\,\mathrm{SO_2NH}(\mathrm{CH_3}),\,\mathrm{SO_2N}(\mathrm{CH_3})_2,\,\mathrm{C_1\text{-}C_6}\text{ alkyl},\,\mathrm{C_1\text{-}C_6}$ haloalkyl, C₃-C₆ cycloalkyl, C₂-C₆ alkenyl, C₂-C₆ haloalkenyl, C₂-C₆ alkynyl, C₂-C₆ haloalkynyl, C₂-C₆ alkoxy, C₂-C₆ 35 haloalkoxy, phenyl, C₃-C₆ alkenyloxy, C₃-C₆ haloalkenyloxy, C₃-C₆ alkynyloxy, C₃-C₆ cycloalkoxy, C₃-C₆ halocycloalkoxy, benzyloxy, C_1 - C_6 alkylthio, C_1 - C_6 haloalkylthio, C₁-C₆ alkylsulfinyl, C₁-C₆ haloalkylsulfinyl, C₁-C₆ alkylsulfonyl and C₁-C₆ haloalkylsulfonyl;

provided that at least one of R⁵⁷, R⁵⁸, R⁵⁹ and R⁶⁰ is not

More preferably again, R57, R58, R59 and R60 are selected, independently of each other, from the group consisting of hydrogen, cyano, halogen, C₁-C₆ alkyl and C₁-C₆ 45 haloalkyl;

provided that at least one of R⁵⁷, R⁵⁸, R⁵⁹ and R⁶⁰ is not hydrogen.

More favourably again, R⁵⁷, R⁵⁸, R⁵⁹ and R⁶⁰ are selected, independently of each other, from the group con- 50 sisting of hydrogen, halogen, cyano, C1-C4 alkyl, CHF2 and CF₃;

provided that at least one of R⁵⁷, R⁵⁸, R⁵⁹ and R⁶⁰ is not hydrogen.

Most preferably, R⁵⁷′, R⁵⁸′, R⁵⁹′ and R⁶⁰′ are selected, inde-55 pendently of each other, from the group consisting of hydrogen and halogen;

provided that at least one of R⁵⁷, R⁵⁸, R⁵⁹ and R⁶⁰ is not

In another group of compounds, $R^{57'}$, $R^{58'}$, $R^{59'}$ and $R^{60'}$ are 60 selected, independently of each other, from the group consisting of hydrogen, phenyl and halophenyl;

provided that at least one of $R^{57'},\, \tilde{R}^{58'},\, \tilde{R}^{59'}$ and $R^{60'}$ is not hydrogen.

In another group of compounds, $R^{57'}$, $R^{58'}$, $R^{59'}$ and $R^{60'}$ are 65 selected, independently of each other, from the group consisting of hydrogen, methy, ethyl and hydroxy-C₂-C₄-alkyl;

34

provided that at least one of R⁵⁷, R⁵⁸, R⁵⁹ and R⁶⁰ is not

Preferably in this group, R⁵⁷, R⁵⁸, R⁵⁹ and R⁶⁰ are selected, independently of each other, from the group consisting of hydrogen and hydroxyethyl;

provided that at least one of $R^{57^{\prime}}, R^{58^{\prime}}, R^{59^{\prime}}$ and $R^{60^{\prime}}$ is not

 R^{61} and R^{62} are selected independently of each other from the group consisting of hydrogen, fluorine, cyano, C₁-C₄ alkyl and C₁-C₄ haloalkyl;

 $R^{63'}$, $R^{64'}$, $R^{65'}$, $R^{66'}$, $R^{67'}$ and $R^{68'}$ are selected independently of each other from the group consisting of hydrogen, halogen, hydroxy, cyano, C₁-C₄ alkyl, C₁-C₄ haloalkyl, C_1 - C_4 alkoxy, C_1 - C_4 haloalkoxy and C_1 - C_4 alkylthio. More preferably again, $R^{61'}$ and $R^{62'}$ are selected indepen-

dently of each other from the group consisting of hydrogen,

fluorine, cyano, C_1 - C_4 alkyl and C_1 - C_4 haloalkyl; $R^{63'}$, $R^{64'}$, $R^{65'}$, $R^{66'}$, $R^{67'}$ and $R^{68'}$ are selected independent dently of each other from the group consisting of hydrogen, fluorine, cyano, C₁-C₄ alkyl, C₁-C₄ haloalkyl, C₁-C₄ alkoxy and C_1 - C_4 haloalkoxy.

More favourably again, R^{61'} and R^{62'} are selected independently of each other from the group consisting of hydrogen,

fluorine, methyl, ethyl, CHF $_2$ and CF $_3$; $R^{62'}$, $R^{63'}$, $R^{64'}$, $R^{65'}$, $R^{66'}$, $R^{67'}$ and $R^{68'}$ are selected independently of each of there from the group consisting of hydrogen, fluorine, methyl, ethyl, methoxy, difluoromethoxy, trif-

luoromethoxy, CHF $_2$ and CF $_3$. Yet more favourably, R $^{61'}$, R $^{62'}$, R $^{63'}$, R $^{64'}$, R $^{65'}$, R $^{66'}$, R $^{67'}$

and $R^{68'}$ are hydrogen, CHF₂, CF₃ or methyl. Yet more favourably still, $R^{61'}$, $R^{62'}$, $R^{63'}$, $R^{64'}$, $R^{65'}$, $R^{66'}$,

 $R^{67^{\circ}}$ and $R^{68^{\circ}}$ are hydrogen or methyl. Most preferably, $R^{61^{\circ}},\,R^{62^{\circ}},\,R^{63^{\circ}},\,R^{64^{\circ}},\,R^{65^{\circ}},\,R^{66^{\circ}},\,R^{67^{\circ}}$ and $R^{68'}$ are hydrogen.

R⁶⁹ is selected from hydrogen, C₁-C₄ alkyl, C₃-C₄ alkenyl and C_1 - C_4 alkylcarboxy.

More preferably again, R⁶⁹ is selected from hydrogen, C_1 - C_4 alkyl and C_1 - C_4 alkylcarboxy.

More favourably again, R^{69'} is selected from hydrogen and 40 C₁-C₄ alkyl.

Most preferably, R⁶⁹ is hydrogen.

n is 0 or 1.

In one preferred group of compounds, n is 0.

In another preferred group of compounds, n is 1.

p and q are independently selected from 0 and 1.

In one group of compounds, p and q are 0.

In another group of compounds, p and q are 1

In another group of compounds, p is 1 and q is 0.

r, s and t are independently selected from 0 and 1.

More preferably again, r and s are 0 and t is 1 or 0.

Most preferably, r, s and t are each 0.

In a group of compounds of formula I, R_1 and R_2 are each independently selected from hydrogen, C₁-C₄ alkyl, C₃-C₄ alkenyl and C₃-C₄ alkynyl;

or R₁ and R₂ together with the nitrogen atom to which they are attached form a pyrrolidine or piperidine;

R₃ represents hydrogen, halogen, cyano, mercapto, hydroxy, C_1 - C_4 alkyl, C_1 - C_4 haloalkyl, C_2 - C_4 alkenyl, C_2 - C_4 haloalkenyl, C2-C4 alkynyl, C1-C4 alkoxy, C1-C4 haloalkoxy, C₃-C₆ cycloalkyl, amino, C₁-C₂ alkylamino, di(C₁-C₆alkyl) amino, pyrrolidino, imidazolino, triazolino, tetrazolino, formyl, C_2 - C_5 alkylcarbonyl, C_2 - C_5 haloalkylcarbonyl, C₁-C₆ alkylthio, C₁-C₆ alkylsulfinyl, C₁-C₆ alkylsulfonyl, C_1 - C_6 haloalkylthio, C_1 - C_6 haloalkylsulfinyl, C_1 - C_6 haloalkylsulfonyl or C_1 - C_6 hydroxyalkyl;

R₄ represents hydrogen, halogen, cyano, amino, C₁-C₄ alkyl, C₁-C₄ haloalkyl, C₃-C₆ cycloalkyl, C₂-C₄ alkenyl, C_2 - C_4 alkynyl, C_1 - C_4 alkoxy, C_1 - C_4 haloalkoxy, C_1 - C_4 alkylthio, C_1 - C_4 alkylsulfinyl, C_1 - C_4 alkylsulfonyl, methylamino and dimethylamino;

 R_5 represents hydrogen, C_1 - C_{12} -alkylsulfonyl, C_1 - C_{12} alkyl, C_3 - C_{12} alkenyl, C_3 - C_{12} alkynyl, or is C_1 - C_{12} alkyl, $\mathrm{C_2\text{-}C_{12}}$ alkenyl, $\mathrm{C_2\text{-}C_{12}}$ alkynyl mono- to polysubstituted by substituents independently selected from the group consisting of halogen, cyano, nitro, hydroxy, mercapto, azido, formyl, C_2 - C_7 alkylcarbonyl, C_2 - C_7 haloalkylcarbonyl, C_1 - C_6 alkyl, C_1 - C_6 haloalkyl, C_1 - C_6 alkoxy, C_1 - C_6 10 haloalkoxy, C₁-C₆ alkylthio, C₁-C₆ alkylsulfinyl and C₁-C₆ alkylsulfonyl; or

 C_{12} alkyl)-, $(R_{51})(R_{52})(R_{53})Si-(C_3-C_8cycloalkyl)$ -, $(R_{54}O)$ (R₅₅O)(R₅₆O)Si—, $(R_{54}O)(R_{55}O)(R_{56}O)Si$ — $(C_1$ - 15 C_{12} alkyl)- or $(R_{54}O)(R_{55}O)(R_{56}O)Si-(C_3-C_8cycloalkyl)-;$

 R_5 is $C_1\hbox{-} C_6$ alkyl-B— $C_1\hbox{-} C_{12}$ alkyl-, $C_2\hbox{-} C_6$ alkenyl-B— $C_1\hbox{-}$ C_2 - C_6 alkynyl-B— C_1 - C_{12} alkyl-, C₃-C₈cycloalkyl-B—C₁-C₁₂alkyl-, benzyl-B— C_1 - 20 C_{12}^{12} alkenyl-, C_2 - C_6 alkenyl-B— C_2 - C_{12} alkenyl-, C_2 - C_6 alkyl- $B-C_2-C_{12}$ alkenyl-, C_3-C_8 cycloalkyl- $B-C_2-C_{12}$ alkenyl-, benzyl-B—C₂-C₁₂alkenyl-, phenyl-B— C_2 - C_{12} alkenyl-, C_1 - C_6 alkyl-B— C_2 - C_{12} alkynyl-, C_2 - C_6 alkenyl-B— C_2 - 25 C₁₂alkynyl-, C_2 - C_6 alkynyl-B— C_2 - C_{12} alkynyl-, C₃-C₈cycloalkyl-B—C₂-C₁₂alkynyl-, benzyl-B—C₂-C₁₂alkynyl-, phenyl-B—C₂-C₁₂alkynyl-, C₁-C₁₂alkyl-B-C₃-C₈cycloalkyl-, C₂-C₆alkenyl-B—C₃-C₈cycloalkyl-, C₂-C₆alkynyl-B—C₃-C₈cycloalkyl-, C₃-C₈cycloalkyl-B— C₃-C₈cycloalkyl-, benzyl-B—C₃-C₁₂cycloalkyl- or phenyl-B-C₃-C₁₂cycloalkyl-, wherein the group B is selected from $-N(R_{62})$ —C=O)—, -C=O)— $N(R_{62})$ —, $-N(R_{62})$ SO_2 —or — SO_2 — $N(R_{62})$ —; or

 R_5 is C_1 - C_6 alkyl-B— C_1 - C_{12} alkyl-, C_2 - C_6 alkenyl-B— C_1 - C_2 - C_6 alkynyl-B— C_1 - C_{12} alkyl-, 40 C₃-C₈cycloalkyl-B—C₁-C₁₂alkyl-, benzyl-B—C₁- $C_{12} alkyl-, \quad phenyl-B--C_1-C_{12} alkyl-, \quad C_1-C_6 alkyl-B--C_2 C_2$ - C_6 alkenyl-B— C_2 - C_{12} alkenyl-, C₁₂alkenyl-, C_2 - C_6 alkynyl-B— C_2 - C_{12} alkenyl-, C_3 - C_8 cycloalkyl-B— C_2 - C_{12} alkenyl-, benzyl- $B - C_2 - C_{12}$ alkenyl-, phenyl- $B - C_2$ - 45 C_{12} alkenyl-, C_1 - C_6 alkyl-B— C_2 - C_{12} alkynyl-, C_2 - C_6 alkenyl-B— C_2 - C_{12} alkynyl-, C₂-C₆alkynyl-B—C₂-C₁₂alkynyl-, C_3 - C_8 cycloalkyl-B— C_2 - C_{12} alkynyl-, benzyl-B— C_2 - C_{12} alkynyl-, phenyl-B— C_2 - C_{12} alkynyl-, C_1 - C_6 alkyl-B-C₃-C₈cycloalkyl-, C_2 - \overline{C}_6 alkenyl-B— C_3 - C_8 cycloalkyl-, 50 C_2 - C_6 alkynyl-B— C_3 - C_8 cycloalkyl-B— C_3 - C_8 cycloalkyl-B— C₃-C₈cycloalkyl-, benzyl-B—C₃-C₁₂cycloalkyl-, phenyl-B—C₃-C₁₂cycloalkyl-, all of which, in turn, are mono- to polysubstituted by substituents independently selected from the group consisting of halogen, cyano, hydroxy, mercapto, 55 $\mathrm{C_1\text{-}C_6}\text{ haloalkyl}, \mathrm{C_1\text{-}C_6}\text{ alkoxy}, \text{formyl}, \mathrm{C_2\text{-}C_6}\text{ alkylcarbonyl},$ C_1 - C_6 alkylthio, C_1 - C_6 alkylsulfinyl and C_1 - C_6 alkylsulfonyl;

R₅ is selected from A-, A-(C₁-C₆alkyl)-, A-O—(C₁- C_6 alkyl)-, $A-(C_3-C_6$ alkenyl)-, $A-O-(C_4-C_6$ alkenyl)-, 60 A-O—(C_4 - C_6 alkynyl)-, A-(C3- $A-(C_3-C_6-alkynyl)-,$ C₈cycloalkyl)- and A-O—(C₃-C₈cycloalkyl)-;

wherein A is a three- to ten-membered monocyclic or fused bicyclic ring system which can be aromatic, partially saturated or fully saturated and can contain 1 to 4 hetero atoms 65 selected from the group consisting of nitrogen, oxygen and sulphur, it not being possible for each ring system to contain

-O-O-, -S-S- and -O-S- fragments, and it being possible for the three- to ten-membered ring system to be itself mono- or polysubstituted

A1) by substituents independently selected from the group consisting of

halogen, cyano, nitro, hydroxy, mercapto, nitro, azido, formyl, carboxy, \equiv O, \equiv S, C_1 - C_6 alkyl, C_2 - C_6 alkenyl, $\rm C_2\text{-}C_6$ alkynyl, $\rm C_3\text{-}C_8$ cycloalkyl, $\rm C_1\text{-}C_6$ haloalkyl, $\rm C_2\text{-}C_6$ haloalkenyl, $\rm C_2\text{-}C_6$ haloalkynyl, $\rm C_3\text{-}C_8$ halocycloalkyl, $\rm C_1\text{-}C_6$ alkoxy, C₁-C₆ haloalkoxy, C₃-C₆ alkenyloxy, C₃-C₆ haloalkenyloxy, C₃-C₆ alkynyloxy, C₃-C₈ cycloalkyloxy, C₃-C₈ halocycloalkyloxy, C3-C8 cycloalkenyloxy, C3-C8 halocycloalkenyloxy, benzyl, benzyloxy, phenyl and phenoxy, where the benzyl, benzyloxy, phenyl and phenoxy, in turn, may be mono- to polysubstituted by substituents independently selected from the group consisting of halogen, cyano, nitro, hydroxy, mercapto, amino, C_1 - C_6 alkyl, C_1 - C_6 haloalkyl, C_1 - C_6 alkoxy, C_1 - C_6 haloalkoxy, C_1 - C_6 alkylthio, C₁-C₆ alkylsulfinyl and C₁-C₆ alkylsulfonyl; or

A3) by substituents independently selected from the group

formyl, C2-C7 alkylcarbonyl, C2-C7 haloalkylcarbonyl, C_3 - C_7 alkenylcarbonyl, C_3 - C_7 haloalkenylcarbonyl, C_4 - C_9 cycloalkylcarbonyl, C₂-C₇ alkoxycarbonyl, C₄-C₇ alkenyalkynyloxycarbonyl, C_4 - C_8 C_4 - C_7 loxycarbonyl, cycloalkoxycarbonyl and benzyloxycarbonyl, and benzyloxycarbonyl mono- to polysubstituted by substituents independently selected from the group consisting of halogen, cyano, hydroxy, C_1 - C_6 alkyl, C_1 - C_6 haloalkyl and C_1 - C_6

A4) by substituents independently selected from the group consisting of hydroxyl, C₁-C₄ alkyl, C₂-C₄ alkenyl, C₂-C₄ =N-O-C₃-C₄ haloalkenyl, =N-O-benzyl and =N—O-phenyl, wherein the =N—O-benzyl and =N—Ophenyl are optionally substituted by one or more group selected from the group consisting of halogen, methyl, halomethyl; or

 R_5 is a C_8 - C_{11} spirobicyclic system containing 0, 1 or 2 O, S or N atoms, wherein there are no adjacent O atoms, which is optionally substituted by one or more groups independently selected from halogen, CN, NO2, OH, SH, CHO, COOH, $tri(C_1\text{-}C_6\text{-}alkyl)silyl, \quad C_1\text{-}C_6 \quad alkyl, \quad --CH(CH_3)--CH_2--CH_2--CH_$ CH_2 — CH_3 , —CH— $CH(CH_3)$ — CH_2 — CH_3 , — CH_2 — CH_2 — $CH(CH_3)$ — CH_3 , — CH_2 — CH_2 — $CH(CH_3)_2$, —CH(CH₃)—CH(CH₃)₂, C₁-C₆ haloalkyl, C₃-C₆ cycloalkyl, C₃-C₆ halocycloalkyl, C₂-C₆ alkenyl, C₂-C₆ haloalkenyl, C_1 - C_6 alkoxy, C_1 - C_6 haloalkoxy, C_2 - C_7 alkylcarbonyl, C₄-C₇-alkenyloxycarbonyl, C_2 - C_7 alkoxycarbonyl, C_4 - C_7 alkynyloxycarbonyl, C_1 - C_6 alkylthio, C_1 - C_6 alkylsulfi nyl, C_1-C_6 alkylsulfonyl, $=O, -C(=O)NH_2, -C(=O)NH$ (CH_3) , $-C(=O)N(CH_3)_2$ and $-C(=S)NH_2$;

R₆ is hydrogen;

 R_7 is hydrogen or C_1 - C_4 alkyl.

In another group of compounds of formula I, R_1 and R_2 are each independently selected from hydrogen or C₁-C₄ alkyl; or R₁ and R₂ together with the nitrogen atom to which they are attached form a pyrrolidine or piperidine;

R₃ represents hydrogen, halogen, cyano, C₁-C₄ alkyl, C_1 - C_4 haloalkyl, C_2 - C_4 alkenyl, C_2 - C_4 alkynyl, C_1 - C_4 alkoxy, C₃-C₆ cycloalkyl, amino, C₁-C₂ alkylamino, di(C₁-C₆alkyl) amino, pyrrolidino, imidazolino, triazolino, formyl, phenyl, C₂-C₄ alkylcarbonyl, C₁-C₆ alkylthio, C₁-C₆ alkylsulfinyl, C_1 - C_6 alkylsulfonyl or C_1 - C_6 hydroxyalkyl;

 R_4 is selected from fluorine, chlorine, bromine, C_1 - C_4 alkyl, C_1 - C_4 alkenyl, C_1 - C_4 haloalkyl, C_1 - C_4 alkoxy, and C_3 - C_6 cycloalkyl;

 R_5 is selected from $G^1,\,G^2,\,G^3\text{-}G^4,\,G^5,\,G^6\text{-}G^7,\,G^8,\,G^9,\,G^{10}\text{-}G^{11},\,G^{12},\,G^{13},\,G^{14},\,G^{15}$ and $G^{16};$

 R_6 is hydrogen;

R₇ is selected from hydrogen or C₁-C₄ alkyl;

 $\rm G^1$ is a $\rm C_8\text{-}C_{10}$ fused bicyclic ring system which may be saturated or comprise one carbon-carbon double bond and is optionally substituted by one or more groups independently selected from hydroxyl, $\rm C_1\text{-}C_4$ alkyl, $\rm C_1\text{-}C_4$ alkoxy, halogen, $\rm C_1\text{-}C_4$ haloalkyl and cyano;

 $\rm G^2$ is $\rm C_3\text{-}C_6$ cycloalkenyl, which is optionally substituted by one or more groups independently selected from halogen, $\rm CN, NO_2, OH, SH, CHO, COOH, tri(C_1\text{-}C_6\text{-}alkyl)silyl, ethyl, n-propyl, iso-propyl, n-butyl, iso-butyl, sec-butyl, tert-butyl, n-pentyl, —CH(CH_3)—CH_2—CH_2—CH_3, —CH—CH (CH_3)—CH_2—CH_3, —CH_2—CH_2—CH(CH_3)—CH_3, <math display="inline">^{20}$ —CH_2—CH_2—CH(CH_3)_2, —CH(CH_3)—CH(CH_3)_2, C_2\text{-}C_6 haloalkyl, C_3\text{-}C_6 cycloalkyl, C_3\text{-}C_6 halocycloalkyl, C_2-C_6 alkenyl, C_2-C_6 haloalkenyl, C_1-C_6 alkoxy, C_1-C_6 haloalkoxy, C_2-C_7 alkylcarbonyl, C_2-C_7 alkoxycarbonyl, C_4-C_7 alkoxycarbonyl, C_4-C_7 alkylcarbonyl, C_1-C_6 alkylsulfonyl, C_1-C_6 alkylsulfony

 $\rm G^3$ is phenyl, which is optionally substituted by one or \rm_{30} more groups independently selected from hydroxyl, $\rm C_1\text{-}C_4$ alkyl, $\rm C_2\text{-}C_4$ alkenyl, $\rm C_2\text{-}C_4$ alkynyl, $\rm C_1\text{-}C_4$ alkoxy, halogen and cyano, wherein the alkyl groups are optionally substituted by one or more halogen;

 G^4 is C_3 - C_{12} cycloalkyl which is optionally substituted by 35 one or more groups independently selected from hydroxyl, C_1 - C_4 alkyl, C_2 - C_4 alkenyl, C_2 - C_4 alkynyl, C_1 - C_4 alkoxy, halogen and cyano, wherein the alkyl groups are optionally substituted by one or more halogen;

 $\rm G^5$ is $\rm C_3\text{-}C_7$ cycloalkyl, which is optionally substituted by one or more groups independently selected from halogen, $\rm CN, NO_2, OH, SH, CHO, COOH, tri(C_1\text{-}C_6\text{-}alkyl)silyl, ethyl, n-propyl, iso-propyl, n-butyl, iso-butyl, sec-butyl, tert-butyl, n-pentyl, —CH(CH_3)—CH_2—CH_2—CH_3, —CH—CH (CH_3)—CH_2—CH_3, —CH—CH_2—CH(CH_3)—CH_3, —CH(CH_3)—CH(CH_3)_2, C_2\text{-}C_6 haloalkyl, C_3\text{-}C_6 cycloalkyl, C_3\text{-}C_6 halocycloalkyl, C_2\text{-}C_6 alkenyl, C_2\text{-}C_6 haloalkenyl, C_1\text{-}C_6 alkoxy, C_1\text{-}C_6 haloalkoxy, C_3\text{-}C_6\text{-}alkenyloxy, C_2\text{-}C_7 alkylcarbonyl, C_2\text{-}C_7 alkoxycarbonyl, C_4\text{-}C_7 alkylcarbonyl, C_4\text{-}C_7 alkylcarbonyl, C_1\text{-}C_6 alkylsulfinyl, phenoxy, —C(=O)NH_2, —C(=O)NH(CH_3), —C(=O)N(CH_3)_2 and —C(=S)NH_2;$

 G^6 is phenyl, which must be substituted by at least one fluorine and is optionally further substituted by one or more groups independently selected from halogen, CN, NO₂, OH, SH, CHO, C(=O)NH₂, C(=O)NH(CH₃), C(=O)N(CH₃)₂, C(=S)NH₂, C(=S)NH(CH₃), C(=S)N(CH₃)₂, SO₂NH₂, SO₂NH(CH₃), SO₂N(CH₃)₂, C₁-C₆ alkyl, C₁-C₆ haloalkyl, C₃-C₆ cycloalkyl, C₂-C₆ alkenyl, C₂-C₆ haloalkenyl, C₂-C₆ alkylyl, C₂-C₆ haloalkynyl, C₁-C₆ alkoxy, C₁-C₆ haloalkoxy, C₃-C₆ alkenyloxy, C₃-C₆ cycloalkoxy, C₃-C₆ haloalkenyloxy, C₃-C₆ alkylthio, C₁-C₆ haloalkylthio, C₁-C₆ haloalkylthio, C₁-C₆ haloalkylthio, C₁-C₆ haloalkylthio, C₁-C₆ haloalkylthionyl and C₁-C₆ haloalkylsulfonyl;

G⁷ is methylene;

G8 is

$$R^{14'}$$
 $R^{14'}$
 $R^{14'}$
 $R^{14'}$
 $R^{14'}$
 $R^{14'}$
 $R^{14'}$
 $R^{14'}$

G9 is

G¹⁰ is phenyl, which is optionally substituted by one or more groups independently selected from hydrogen, halogen, CN, NO₂, OH, SH, CHO, C(=O)NH₂, C(=O)NH(CH₃), C(=O)N(CH₃)₂, C(=S)NH₂, C(=S)NH(CH₃), C(=S)N (CH₃)₂, SO₂NH₂, SO₂NH(CH₃), SO₂N(CH₃)₂, C₁-C₆ alkyl, C₁-C₆ haloalkyl, C₃-C₆ cycloalkyl, C₂-C₆ alkenyl, C₂-C₆ haloalkenyl, C₂-C₆ alkynyl, C₂-C₆ haloalkynyl, C₁-C₆ alkoxy, C₃-C₆ alkynyloxy, C₃-C₆ alkenyloxy, C₃-C₆ haloalkenyloxy, C₃-C₆ alkynyloxy, C₃-C₆ cycloalkoxy, C₃-C₆ haloalkenyloxy, C₃-C₆ alkylsulfinyl, C₁-C₆ alkylsulfinyl, C₁-C₆ alkylsulfinyl, C₁-C₆ alkylsulfonyl, C₁-C₆ haloalkylsulfinyl, C₁-C₆ alkylsulfonyl, C₁-C₆ haloalkylsulfonyl, phenyl, 2-phenyl-ethynyl and 2-phenyl-ethyl;

 G^{11} is methylene substituted by at least one group independently selected from C_1 - C_4 alkyl, C_1 - C_4 haloalkyl, CN, C_1 - C_4 alkoxy and C_1 - C_4 haloalkoxy;

 G^{12} is

$$R^{29'}$$
 $R^{30'}$
 $R^{31'}$
 R^{32}
 $R^{33'}$
 $R^{33'}$
 $R^{34'}$

 G^{13} is a C_8 - C_{11} spirobicyclic system containing 0, 1 or 2 O or N atoms, wherein there are no adjacent O atoms, which is optionally substituted by one or more groups independently selected from halogen, CN, NO2, OH, SH, CHO, COOH, tri(C_1 - C_6 alkyl)silyl, C_1 - C_6 alkyl, C_1 - C_6 haloalkyl, C_3 - C_6 cycloalkyl, C_3 - C_6 halocycloalkyl, C_2 - C_6 alkenyl, C_2 - C_6 haloalkenyl, C_1 - C_6 alkoxy, C_1 - C_6 haloalkoxy, C_2 - C_7 alkylcarbonyl, C_2 - C_7 alkoxycarbonyl, C_4 - C_7 alkynyloxycarbonyl, C_4 - C_7 alkynyloxycarbonyl, C_4 - C_7 alkylsulfinyl, C_1 - C_6 alkylsulfinyl, C_1 - C_6 alkylsulfinyl, C_1 - C_6 alkylsulfinyl, C_1 - C_6 alkylsulfinyl, C_1 - C_6 -alkylsulfinyl, C_1 - $C_$

G14 is

 G^{15} is

 G^{16} is

$$G^{17} = ()_{r} ()_{s} ()_{t} ()_{t} \#,$$
 $G^{68'} = R^{68'} R^{6$

ring system which can contain 1 to 4 members selected from the group consisting of N, N(R⁶⁹), O and S (for example, pyridine, pyrimidine, furan, pyrrole, thiazole, oxazole, pyrazole, imidazole, oxadiazole, thiadiazole or tetrazole), it not being possible for each ring system to contain -O-O-, 45 -S—S— and —O—S-fragments, and it being possible for the five- to six-membered ring system to be itself mono- or polysubstituted by groups selected from the group consisting of halogen, CN, NO₂, OH, SH, CHO, C(=O)NH₂, C(=O) $NH(CH_3), C(=O)N(CH_3)_2, C(=S)NH_2, C(=S)NH(CH_3), 50$ $C(=S)N(CH_3)_2$, SO_2NH_2 , $SO_2NH(CH_3)$, $SO_2N(CH_3)_2$, $\mathrm{C_1\text{-}C_6}$ alkyl, $\mathrm{C_1\text{-}C_6}$ haloalkyl, $\mathrm{C_3\text{-}C_6}$ cycloalkyl, $\mathrm{C_2\text{-}C_6}$ alkenyl, C_2 - C_6 haloalkenyl, C_2 - C_6 alkynyl, C_2 - C_6 haloalkynyl, C₁-C₆ alkoxy, C₁-C₆ haloalkoxy, C₃-C₆ alkenyloxy, C₃-C₆ haloalkenyloxy, C₃-C₆ alkynyloxy, C₃-C₆ cycloalkoxy, 55 C₃-C₆ haloacycloalkoxy, C₁-C₆ alkythio, C₁-C₆ haloalky lthio, C_1 - C_6 alkylsulfinyl, C_1 - C_6 haloalkylsulfinyl, C_1 - C_6 alkylsulfonyl and C₁-C₆ haloalkylsulfonyl;

R1' is selected from the group consisting of hydrogen, fluorine, C₁-C₄-alkyl, C₁-C₄-haloalkyl;

R2', R3', R4' and R5' are selected, independently of each other, from the group consisting of hydrogen, fluorine, C₁-C₄ alkyl, C_1 - C_4 haloalkyl, C_1 - C_4 alkoxy and C_1 - C_4 alkylthio; $R^{11'}$, $R^{12'}$, $R^{13'}$ and $R^{14'}$ are selected, independently of each

other, from the group consisting of hydrogen, halogen, CN, 65 NO₂, OH, SH, CHO, C(=O)NH₂, C(=O)NH(CH₃), C(=O) $N(CH_3)_2$, $C(=S)NH_2$, $C(=S)NH(CH_3)$, $C(=S)N(CH_3)_2$,

 SO_2NH_2 , $SO_2NH(CH_3)$, $SO_2N(CH_3)_2$, C_1 - C_6 alkyl, C_1 - C_6 haloalkyl, C_3 - C_6 cycloalkyl, C_2 - C_6 alkenyl, C_2 - C_6 haloalkenyl, C₂-C₆ alkynyl, C₂-C₆ haloalkynyl, C₁-C₆ alkoxy, C₁-C₆ haloalkoxy, phenyl, C₃-C₆ alkenyloxy, C₃-C₆ haloalkenyloxy, C₃-C₆ alkynyloxy, C₃-C₆ cycloalkoxy, C₃-C₆ halocycloalkoxy, benzyloxy, C_1 - C_6 alkylthio, C_1 - C_6 haloalkylthio, C_1 - C_6 alkylsulfinyl, C_1 - C_6 haloalkylsulfinyl, C_1 - C_6 alkylsulfinyl, C_1 - C_6 haloalkylsulfinyl, C_1 - C_6 alkylsulfinyl, C_1 - C_6 alkylsulfinyl, C_1 - C_6 haloalkylsulfinyl, C_1 fonyl and C_1 - C_6 haloalkylsulfonyl; $R^{15'}$ and $R^{16'}$ are independently selected from the group

10 consisting of hydrogen, halogen, cyano, C₁-C₄ alkyl, C₁-C₄

haloalkyl and C_3 - C_6 cycloalkyl; each $R^{17'}$, $R^{18'}$, $R^{19'}$, $R^{20'}$, $R^{21'}$ and $R^{22'}$ are selected independently of each other, from the group consisting of hydrogen, halogen, cyano, C₁-C₄ alkyl, C₁-C₄ haloalkyl, C₁-C₄

15 alkoxy, C_1 - C_4 haloalkoxy and C_3 - C_6 cycloalkyl; R^{23} ', R^{24} ' and R^{25} ' are independently selected from the group consisting of hydrogen, halogen, cyano, C₁-C₄ alkyl, C₁-C₄haloalkyl, C₁-C₄alkoxy, C₃-C₆cycloalkyl, C₃-C₆halocycloalkyl and C1-C4 alkylthio;

 $R^{26'}$ is $C(R^{36'})_2$, N—OH, N—O— C_1 - C_4 -alkyl, N—O— C_2 - C_4 -alkenyl, N—O— C_2 - C_4 alkynyl, N—O— C_1 - C_4 haloalkyl, N—O—C₂-C₄ haloalkenyl, N—O-benzyl, N—Ophenyl, N-O-halophenyl, O wherein the N-O-benzyl and N—O-phenyl may be substituted by one or more groups 25 independently selected from the group consisting of halogen, methyl and halomethyl;

 $R^{27'}$, $R^{28'}$, $R^{29'}$, $R^{30'}$, $R^{31'}$, $R^{32'}$, $R^{33'}$, $R^{34'}$ and $R^{35'}$ are each independently selected from the group consisting of hydrogen, hydroxyl, C₁-C₄ alkyl, C₂-C₄ alkenyl, C₂-C₄ alkynyl, 30 C_1 - C_4 alkoxy, halogen, C_1 - C_4 haloalkyl, C_2 - C_4 haloalkenyl, cyano, benzyl and phenyl;

or R^{28'} and R^{29'} together with the two carbon atoms to

which they are attached form a double bond;
each R^{36'} is independently selected from hydrogen, halo35 gen and C₁-C₄ alkyl;
R^{37'} and R^{38'} are selected independently of each other from

the group consisting of hydrogen, halogen, cyano, C₁-C₄ alkyl and C_1 - C_4 haloalkyl; $R^{39'}$, $R^{40'}$, $R^{41'}$, $R^{42'}$, $R^{43'}$ and $R^{44'}$ are selected independent

 G^{17} is a five- to six-membered monocyclic heteroaromatic 40 dently of each other from the group consisting of hydrogen, halogen, hydroxy, cyano, C₁-C₄ alkyl, C₁-C₄ haloalkyl, C_1 - C_4 alkoxy, C_1 - C_4 haloalkoxy and C_1 - C_4 alkylthio; $R^{45'}$, $R^{46'}$, $R^{47'}$, $R^{48'}$ and $R^{49'}$ are selected, independently of

each other, from the group consisting of hydrogen, halogen, CN, NO₂, OH, SH, CHO, C(=O)NH₂, C(=O)NH(CH₃), $C(=O)N(CH_3)_2$, $C(=S)NH_2$, $C(=S)NH(CH_3)$, C(=S)N(CH₃)₂, SO₂NH₂, SO₂NH(CH₃), SO₂N(CH₃)₂, C₁-C₆ alkyl, C₁-C₆ haloalkyl, C₃-C₆ cycloalkyl, C₂-C₆ alkenyl, C₂-C₆ haloalkenyl, C₂-C₆ alkynyl, C₂-C₆ haloalkynyl, C₁-C₆ alkoxy, C₁-C₆ haloalkoxy, C₃-C₆ alkenyloxy, C₃-C₆ haloalkenyloxy, C_3 - C_6 alkynyloxy, C_3 - C_6 cycloalkoxy, C_3 - C_6 halocycloalkoxy, C_1 - C_6 alkylthio, C_1 - C_6 haloalkylthio, C_1 - C_6 alkylsulfinyl, C_1 - C_6 haloalkylsulfinyl, C_1 - C_6 alkylsulfonyl and C_1 - C_6 haloalkylsulfonyl; R^{50} is selected from the group consisting of hydrogen,

fluorine, C_1 - C_4 alkyl, C_1 - C_4 haloalkyl; $R^{51'}$, $R^{52'}$, $R^{53'}$, $R^{54'}$, $R^{55'}$ and $R^{56'}$ are selected, independent dently of each other, from the group consisting of hydrogen, fluorine, C1-C4 alkyl, C1-C4 haloalkyl, C2-C4 alkoxy and

 $C_1\text{-}C_4$ alkylthio; $R^{57'}, R^{58'}, R^{59'}$ and $R^{60'}$ are selected, independently of each other, from the group consisting of hydrogen, halogen, CN, NO_2 , OH, SH, CHO, C(=O)NH₂, C(=O)NH(CH₃), C(=O) $N(CH_3)_2$, $C(=S)NH_2$, $C(=S)NH(CH_3)$, $C(=S)N(CH_3)_2$, SO₂NH₂, SO₂NH(CH₃), SO₂N(CH₃)₂, C₁-C₆ alkyl, C₁-C₆ haloalkyl, C₃-C₆ cycloalkyl, C₂-C₆ alkenyl, C₂-C₆ haloalkenyl, C₂-C₆ alkynyl, C₂-C₆ haloalkynyl, C₂-C₆ alkoxy, C₂-C₆

haloalkoxy, phenyl, C₃-C₆ alkenyloxy, C₃-C₆ haloalkenyloxy, C₃-C₆ alkynyloxy, C₃-C₆ cycloalkoxy, C₃-C₆ halocycloalkoxy, benzyloxy, C₁-C₆ alkylthio, C₁-C₆ haloalkylthio, C_1 - C_6 alkylsulfinyl, C_1 - C_6 haloalkylsulfinyl, C_1 - C_6 alkylsulfonyl and C₁-C₆ haloalkylsulfonyl;

provided that at least one of R⁵⁷, R⁵⁸, R⁵⁹ and R⁶⁰ is not hydrogen;

 R^{61} and R^{62} are selected independently of each other from the group consisting of hydrogen, fluorine, cyano, C₁-C₄ alkyl and C_1 - C_4 haloalkyl; $R^{63'}$, $R^{64'}$, $R^{65'}$, $R^{66'}$, $R^{67'}$ and $R^{68'}$ are selected independent

dently of each other from the group consisting of hydrogen, halogen, hydroxy, cyano, C₁-C₄ alkyl, C₁-C₄ haloalkyl,

is selected from hydrogen, C₁-C₄ alkyl and C₁-C₄ 15 alkylcarboxy;

n is 0 or 1;

p and q are independently selected from 0 and 1;

r, s and t are independently selected from 0 and 1.

each C₁-C₄ alkyl;

R₃ represents hydrogen, halogen, cyano, C₁-C₄ alkyl, C₁-C₄ haloalkyl, C₂-C₄ alkenyl, C₂-C₄ alkynyl, C₁-C₄ alkoxy, C₃-C₆ cycloalkyl, C₁-C₄ alkylthio, C₁-C₄ alkylsulfinyl or C₁-C₄ alkylsulfonyl;

R₄ is selected from methyl, ethyl, methoxy, fluorine and chlorine:

R₆ is hydrogen;

 R_7 is hydrogen or C_1 - C_4 alkyl.

In another group of compounds, R_1 and R_2 are each independently selected from methyl, ethyl and isopropyl;

R₃ represents hydrogen, halogen, C₁-C₄ alkyl, C₁-C₄ haloalkyl, cyclopropyl, ethynyl or C₁-C₄ alkoxy;

R₄ is selected from methyl, methoxy, fluorine and chlorine;

R₆ is hydrogen;

 R_7 is hydrogen.

In another group of compounds, R₁ is methyl;

 R_2 is ethyl;

R₃ is selected from hydrogen, bromine, iodine, methyl, CHF₂, cyclopropyl, ethynyl and methoxy;

 R_4 is methyl;

R₆ is hydrogen;

R₇ is hydrogen.

In another group of compounds, G^1 is a C_9 - C_{10} fused bicyclic ring system which may be saturated or comprise one 45 carbon-carbon double bond and is optionally substituted by one or more groups independently selected from C₁-C₄ alkyl, fluorine, methoxy and C₁-C₄ fluoroalkyl;

G² is C₃-C₆ cycloalkenyl, which is optionally substituted by one or more groups independently selected from halogen, 50 ethyl, n-propyl, iso-propyl, n-butyl, iso-butyl, sec-butyl, tertbutyl, n-pentyl, — $CH(CH_3)$ — CH_2 — CH_2 — CH_3 , —CH— $-\text{CH}_2$ $-\text{CH}_2$ $-\text{CH}(\text{CH}_3)$ $-\text{CH}(\text{CH}_3)$ $-\text{CH}(\text{CH}_3)$ $CH(CH_3)$ — CH_2 — CH_3 , $-CH_2$ — CH_2 — $CH(CH_3)_2$, C₂-C₆ haloalkyl, C₁-C₆ alkoxy and C₁-C₆ alkylthio;

G³ is phenyl, which is optionally substituted by one or more groups independently selected from hydroxyl, C₁-C₄ alkyl, C_1 - C_4 fluoroalkyl, C_1 - C_4 alkoxy and halogen;

G⁴ is C₅-C₆ cycloalkyl which is optionally substituted by one or more groups independently selected from hydroxyl, 60 C_1 - C_4 alkyl, C_2 - C_4 alkenyl, C_2 - C_4 alkynyl, C_1 - C_4 alkoxy, halogen and cyano, wherein the alkyl groups are optionally substituted by one or more halogen;

G⁵ is C₃-C₇ cycloalkyl, which is substituted by one or more groups independently selected from ethyl, n-propyl, iso-propyl, n-butyl, iso-butyl, sec-butyl, tert-butyl, n-pentyl, —CH (CH_3) — CH_2 — CH_2 — CH_3 , --CH---CH(CH₃)---CH₂-

 ${\rm CH_3, -\!CH_2\!-\!CH_2\!-\!CH_2\!-\!CH_2\!-\!CH_3, -\!CH_2\!-\!CH$ (CH₃)₂, —CH(CH₃)—CH(CH₃)₂, C₂-C₆ haloalkyl, C₁-C₆ alkoxy, C_3 - C_4 -alkenyloxy, phenoxy and C_1 - C_6 alkylthio;

G⁶ is phenyl, which must be substituted by at least one fluorine and is optionally further substituted by one or more groups independently selected from halogen, CN, NO2, OH, SH, CHO, C(=O)NH₂, C(=O)NH(CH₃), C(=O)N(CH₃)₂, $C(=S)NH_2$, $C(=S)NH(CH_3)$, $C(=S)N(CH_3)_2$, SO_2NH_2 , SO₂NH(CH₃), SO₂N(CH₃)₂, C₁-C₆ alkyl, C₁-C₆ haloalkyl, C₃-C₆ cycloalkyl, C₂-C₆ alkenyl, C₂-C₆ haloalkenyl, C₂-C₆ alkynyl, C₁-C₆ alkoxy, C₁-C₆ haloalkoxy, C₃-C₆ alkenyloxy, C_3 - C_6 alkynyloxy, C_1 - C_6 alkylthio, C_1 - C_6 alkylsulfinyl and

 C_1 - C_6 alkylsulfonyl; G^{10} is phenyl, which is optionally substituted by one or more groups independently selected from halogen, CN, OH, SH, CHO, methyl, ethyl, n-propyl, iso-propyl, phenyl, CH₂F, CHF₂, CF₃, CHF—CH₃, CF₂—CH₃, CF₂—CF₃, cyclopropyl, CH=CH₂, C(CH₃)=CH₂, CH=CH(CH₃), C(CH₃) =CH(CH₃), CH=C(CH₃)₂, C(CH₃)=C(CH₃)₂, CH=CF₂, In another group of compounds of formula I, R_1 and R_2 are 20 CH=CCl₂, C=CH, methoxy, ethoxy, iso-propyloxy, OCHF₂, OCH₂—C=CH, OCH(CH₃)—C=CH, SCH₃, SCH₂CH₃, S(=O)CH₃, S(=O)CH₂CH₃, S(=O)₂CH₃ and $S(=O)_2CH_2CH_3;$

> G¹¹ is methylene substituted by at least one group indepen-25 dently selected from C₁-C₄ alkyl, C₁-C₄ haloalkyl, CN, C₁-C₄ alkoxy and C₁-C₄ haloalkoxy;

G¹³ is a C₈-C₁₁ spirobicyclic system containing 0, 1 or 2 O or N atoms, wherein there are no adjacent O atoms, which is optionally substituted by one or more groups independently selected from halogen, C₁-C₆ alkyl, C₁-C₆ haloalkyl, C₁-C₆ alkoxy, C_1 - C_6 alkylthio and \Longrightarrow O;

G¹⁷ is a five- to six-membered monocyclic heteroaromatic ring system which can contain 1 to 4 members selected from the group consisting of N, N(R⁶⁹), O and S (for example, pyridine, pyrimidine, furan, pyrrole, thiazole, oxazole, pyrazole, imidazole, oxadiazole, thiadiazole or tetrazole), it not being possible for each ring system to contain —O—O—. -S—S— and —O—S-fragments, and it being possible for the five- to six-membered ring system to be itself mono- or polysubstituted by groups selected from the group consisting of halogen, CN, NO₂, OH, SH, CHO, C(=O)NH₂, C(=O) $NH(CH_3), C(=O)N(CH_3)_2, C(=S)NH_2, C(=S)NH(CH_3),$ $C(=S)N(CH_3)_2$, SO_2NH_2 , $SO_2NH(CH_3)$, $SO_2N(CH_3)_2$, C₁-C₆ alkyl, C₁-C₆ haloalkyl, C₃-C₆ cycloalkyl, C₂-C₆ alkenyl, C₂-C₆ haloalkenyl, C₂-C₆ alkynyl, C₂-C₆ haloalkynyl, C₁-C₆ alkoxy, C₁-C₆ haloalkoxy, C₃-C₆ alkenyloxy, C₃-C₆ haloalkenyloxy, C₃-C₆ alkynyloxy, C₃-C₆ cycloalkoxy, C₃-C₆ halocycloalkoxy, C₁-C₆ alkylthio, C₁-C₆ haloalkylthio, C₁-C₆ alkylsulfinyl, C₁-C₆ haloalkylsulfinyl, C₁-C₆ alkylsulfonyl and C₁-C₆ haloalkylsulfonyl;

 $R^{\scriptscriptstyle \mathrm{T}}$ is selected from the group consisting of hydrogen,

fluorine, C_1 - C_4 alkyl and C_1 - C_4 fluoroalkyl; R^2 ', R^3 ', R^4 ' and R^5 ' are selected, independently of each other, from the group consisting of hydrogen, fluorine, C₁-C₄ alkyl, C_1 - C_4 haloalkyl, C_1 - C_4 alkoxy and C_1 - C_4 alkylthio;

R¹¹, R¹², R¹³ and R¹⁴ are selected, independently of each other, from the group consisting of hydrogen, cyano, halogen, C_1 - C_6 alkyl, C_1 - C_6 haloalkyl, C_1 - C_6 alkoxy and C_1 - C_6 alky-

 $R^{15'}$, $R^{16'}$, $R^{17'}$, $R^{18'}$, $R^{19'}$, $R^{20'}$, $R^{21'}$ and $R^{22'}$ are independently selected from the group consisting of hydrogen, halogen, methyl, ethyl, isopropyl, CH₂F, CHF₂, CF₃, CHF—CH₃,

 CF_2 — CH_3 and CF_2CF_3 ; $R^{23'}$, $R^{24'}$ and $R^{25'}$ are independently selected from the group consisting of hydrogen, halogen, cyano, C₁-C₄ alkyl, C₁-C₄ haloalkyl, C₁-C₄ alkoxy, C₃-C₆ cycloalkyl, C₃-C₆ halocycloalkyl and C₁-C₄ alkylthio;

 $R^{26'}$ is N—OH, N—O— C_1 - C_4 alkyl, N—O— C_2 - C_4 alkenyl, $N-O-C_2-C_4$ alkynyl, $N-O-C_1-C_4$ haloalkyl, N—O—C₂-C₄ haloalkenyl, N—O-benzyl, N—O-phenyl, N—O-halophenyl, O, or $C(R^{36'})_2$; $R^{27'}$, $R^{28'}$, $R^{29'}$, $R^{30'}$, $R^{31'}$, $R^{32'}$, $R^{33'}$, $R^{34'}$ and $R^{35'}$ are each 5

independently selected from the group consisting of hydro-

gen, hydroxyl, C_1 - C_4 alkyl, C_1 - C_4 alkoxy and halogen; or $R^{28'}$ and $R^{29'}$ together with the two carbon atoms to which they are attached form a double bond;

each R³⁶ is independently selected from hydrogen, halo- 10 gen and C1-C4 alkyl;

R³⁷', R³⁸', R³⁹', R⁴⁰', R⁴¹', R⁴²', R⁴³' and R⁴⁴' are selected independently of each other from a group consisting of hydrogen, halogen, methyl, ethyl, isopropyl, monofluoromethyl, polyfluoromethyl, monofluoroethyl, and polyfluoroet- 15 hyl;

R^{45'}, R^{46'}, R^{47'}, R^{48'} and R^{49'} are independently selected from the group consisting of hydrogen, fluorine, chlorine, bromine, iodine, methyl, ethyl, isopropyl, cyclopropyl, C \equiv CH, CH \equiv CH₂, C(CH₃) \equiv CH₂, CF₃, CHF₂, CH₂F, 20 —CHF—CH₃, —CF₂—CH₃, methoxy, diffuoromethoxy, trifluoromethoxy, ethoxy, methlythio, methylsulfinyl and methylsulfonyl;

R^{50'} is selected from the group consisting of hydrogen,

fluorine, C_1 - C_4 alkyl, C_1 - C_4 haloalkyl; $R^{51'}$, $R^{52'}$, $R^{53'}$, $R^{54'}$, $R^{55'}$ and $R^{56'}$ are selected, independently of each other, from the group consisting of hydrogen, fluorine, C₁-C₄ alkyl, C₁-C₄ haloalkyl, C₂-C₄ alkoxy and C₁-C₄ haloalkoxy;

 $R^{57'}$, $R^{58'}$, $R^{59'}$ and $R^{60'}$ are selected, independently of each 30 other, from the group consisting of hydrogen, cyano, halogen, C_1 - C_6 alkyl and C_1 - C_6 haloalkyl;

provided that at least one of R⁵⁷, R⁵⁸, R⁵⁹ and R⁶⁰ is not

 R^{61} and R^{62} are selected independently of each other from 35 the group consisting of hydrogen, fluorine, cyano, C₁-C₄

alkyl and C_1 - C_4 haloalkyl; $R^{63'}$, $R^{64'}$, $R^{65'}$, $R^{66'}$, $R^{67'}$ and $R^{68'}$ are selected independent dently of each other from the group consisting of hydrogen,

and C_1 - C_4 haloalkoxy; R^{69° is selected from hydrogen, C_1 - C_4 alkyl and C_1 - C_4 alkylcarboxy;

n is 0 or 1;

p and q are independently selected from 0 and 1;

r and s are 0 and t is 1 or 0.

In another group of compounds, G^1 is a saturated C_{10} fused bicyclic ring system which is optionally substituted by one or more groups independently selected from C₁-C₄ alkyl, fluorine, methoxy and C₁-C₄ fluoroalkyl;

 G^2 is a C_5 - C_6 cycloalkenyl group optionally substituted by one or more fluorine atoms;

G³ is phenyl, which is optionally substituted by one or more groups independently selected from C₁-C₄ alkyl, CHF₂, CF₃, C₁-C₄ alkoxy and halogen;

G4 is C5-C6 cycloalkyl which is optionally substituted by one or more groups independently selected from hydroxyl, C_1 - C_4 alkyl, C_2 - C_4 alkenyl, C_2 - C_4 alkynyl, C_1 - C_4 alkoxy and

G⁵ is C₅-C₆ cycloalkyl, which is substituted by one or more 60 groups independently selected from ethyl, n-propyl, iso-propyl, n-butyl, iso-butyl, sec-butyl, tert-butyl, n-pentyl, —CH (CH_3) — CH_2 — CH_2 — CH_3 , $-CH-CH(CH_3)-CH_3$ CH₃, —CH₂—CH₂—CH(CH₃)—CH₃, —CH₂—CH₂—CH $(CH_3)_2$, $-CH(CH_3)$ $-CH(CH_3)_2$ and C_2 - C_6 haloalkyl;

G⁶ is phenyl, which must be substituted by at least one fluorine and is optionally further substituted by one or more

groups independently selected from halogen, CN, C1-C4 alkyl, C_1 - C_4 haloalkyl and C_1 - C_4 alkoxy.

G⁷ is methylene;

G¹⁰ is phenyl, which is optionally substituted by one or more groups independently selected from hydrogen, halogen, CN, OH, methyl, ethyl, n-propyl, iso-propyl, CH₂F, CHF₂, CF_3 , CHF— CH_3 , CF_2 — CH_3 , CF_2 — CF_3 , CH— CH_2 , $C(CH_3)=CH_2$ $CH = CH(CH_3), \quad C(CH_3) = CH(CH_3),$ CH=C(CH₃)₂, C(CH₃)=C(CH₃)₂, CH=CF₂, CH=CCl₂, C=CH, methoxy, ethoxy, iso-propyloxy, phenyl and

G¹¹ is methylene substituted by at least one group independently selected from C₁-C₄ alkyl, C₁-C₄ haloalkyl and C₁-C₄

alkoxy; G^{13} is a C_8 - C_{11} spirobicyclic system containing 0, 1 or 2 O or N atoms, wherein there are no adjacent O atoms, which is optionally substituted by one or more groups independently selected from halogen, C₁-C₆ alkyl, C₁-C₆ haloalkyl, C₁-C₆ alkoxy, C_1 - C_6 alkylthio and \Longrightarrow O;

G¹⁷ is a five- to six-membered monocyclic heteroaromatic ring system which can contain 1 to 4 members selected from the group consisting of N, N(R⁶⁹), O and S it not being possible for each ring system to contain -- O--O--S—S— and —O—S— fragments, and it being possible for 25 the five- to six-membered ring system to be itself mono- or polysubstituted by groups selected from the group consisting of halogen, CN, C₁-C₄ alkyl, C₁-C₄ haloalkyl, C₁-C₄ alkoxy, C₁-C₄ haloalkoxy, phenyl or benzyl, wherein the phenyl or benzyl are optionally substituted by halogen, CN, C1-C4 alkyl, C₁-C₄ haloalkyl;

R1 is selected from the group consisting of hydrogen, fluorine, methyl, CH₂F and CF₃;

R2', R3', R4' and R5' are selected, independently of each other, from the group consisting of hydrogen, fluorine, methyl, CH₂F, CF₃ and methoxy;

R¹¹', R¹²', R¹³' and R¹⁴' are selected, independently of each other, from the group consisting of hydrogen, halogen, cyano, $\begin{array}{c} C_1\text{-}C_4 \text{ alkyl, CHF}_2, \text{CF}_3 \text{ and } C_1\text{-}C_4 \text{ alkoxy;} \\ R^{15'}, \ R^{16'}, \ R^{17'}, \ R^{18'}, \ R^{19'}, \ R^{20'}, \ R^{21'} \text{ and } \ R^{22'} \text{ are each} \end{array}$

fluorine, cyano, C₁-C₄ alkyl, C₁-C₄ haloalkyl, C₁-C₄ alkoxy 40 independently selected from hydrogen, fluorine, methyl, ethyl, CH₂F, CHF₂, CF₃ and isopropyl;

 $R^{23'}$, $R^{24'}$ and $R^{25'}$ are independently selected from the group consisting of hydrogen, methyl, fluorine, chlorine, bromine, ethyl, CH₂F, CHF₂ and CF₃ and isopropyl;

 R^{26} is N—OH, N—O— C_1 - C_4 alkyl, N—O— C_2 - C_4 alkenyl, N—O—C₂-C₄ alkynyl, N—O—C₁-C₄ haloalkyl, N—O—C₂-C₄ haloalkenyl, N—O-benzyl, N—O-phenyl, N—O-halophenyl, O, C_2 - C_4 alkenyloxy or $C(R^{36'})$; $R^{27'}$, $R^{28'}$, $R^{29'}$, $R^{30'}$, $R^{31'}$, $R^{32'}$, $R^{33'}$, $R^{34'}$ and $R^{35'}$ are each

50 independently selected from the group consisting of hydrogen, C_1 - C_4 alkyl and halogen; or $R^{28'}$ and $R^{29'}$ together with the two carbon atoms to

which they are attached form a double bond;

each R36' is independently selected from hydrogen, halogen and C_1 - C_4 alkyl; $R^{37'}, R^{38'}, R^{39'}, R^{40'}, R^{41'}, R^{42'}, R^{43'} \mbox{ and } R^{44'} \mbox{ are indepension}$

dently selected from the group consisting of hydrogen, fluorine, methyl and trifluoromethyl;

R^{45'}, R^{46'}, R^{47'}, R^{48'} and R^{49'} are independently selected from the group consisting of hydrogen, fluorine, chlorine, bromine, iodine, methyl, ethyl, isopropyl, cyclopropyl, C=CH, CH=CH₂, C(CH₃)=CH₂, CF₃, CHF₂, CH₂F, -CHF—CH₃, —CF₂—CH₃, methoxy, trifluoromethoxy, ethoxy, methlythio, methylsulfinyl and methylsulfonyl;

R^{50'}, R^{51'}, R^{52'}, R^{53'}, R^{54'}, R^{55'} and R^{56'} are selected, independently of each other, from the group consisting of hydrogen, fluorine, methyl, CH₂F and CF₃;

 $R^{57^{\prime}}.\,R^{58^{\prime}}.\,R^{59^{\prime}}$ and $R^{60^{\prime}}$ are selected, independently of each other, from the group consisting of hydrogen, halogen, cyano, C_1 - C_4 alkyl, CHF₂ and CF₃;

provided that at least one of R⁵⁷, R⁵⁸, R⁵⁹ and R⁶⁰ is not

 $R^{61^{T}}$ and $R^{62'}$ are selected independently of each other from the group consisting of hydrogen, fluorine, methyl, ethyl, CHF, and CF3;

R⁶²', R⁶³', R⁶⁴', R⁶⁵', R⁶⁶', R⁶⁷' and R⁶⁸' are selected independently of each of there from the group consisting of hydro- 10 gen, fluoro, methyl, ethyl, methoxy, difluoromethoxy, trifluoromethoxy, CHF2 and CF3;

 R^{69} is selected from hydrogen and C_1 - C_4 alkyl; n is 0 or 1:

p and q are independently selected from 0 and 1; r and s are 0 and t is 1 or 0.

In another group of compounds, G^1 is a saturated C_{10} fused bicyclic ring system;

 G^2 is a C_5 - C_6 cycloalkenyl group;

 G^3 is phenyl:

G⁴ is cyclohexyl or cyclopentyl;

G⁵ is C₆ cycloalkyl, which is substituted by one or more groups independently selected from ethyl, n-propyl, iso-propyl, n-butyl, iso-butyl, sec-butyl, tert-butyl, n-pentyl, —CH (CH₃)—CH₂—CH₂—CH₃, —CH—CH(CH₃)—CH₂—CH₃, —CH₂ $(CH_3)_2$ and $-CH(CH_3)$ - $-CH(CH_3)_2$;

G⁶ is phenyl, which must be substituted by at least one fluorine and is optionally further substituted by one or more methyl, bromine, iodine or chlorine;

G⁷ is methylene;

G10 is phenyl, which is optionally substituted by one or more groups independently selected from halogen, CN, methyl, ethyl, n-propyl, iso-propyl, ethenyl, methoxy, ethoxy, iso-propyloxy, phenyl, CHF₂, CF₃, CHF—CH₃ and OCHF₂; 35

G¹¹ is methylene substituted by at least one group indepen-

dently selected from methyl, CF₃ and ethyl;

 G^{13} is a C_8 - C_{11} spirobicyclic system containing 0, 1 or 2 O or N atoms, wherein there are no adjacent O atoms, which is optionally substituted by one or more groups independently 40 selected from halogen, C₁-C₄ alkyl, C₁-C₄ alkoxy and =O;

G¹⁷ is a five- to six-membered monocyclic heteroaromatic ring system which can contain 1 or 2 members selected from the group consisting of N, O and S, it not being possible for each ring system to contain —O—O—, —S—S— and 45 -O—S— fragments, and it being possible for the five- to six-membered ring system to be itself mono- or polysubstituted by groups selected from the group consisting of halogen, CN, C1-C4 alkyl, C1-C4 haloalkyl, C1-C4 alkoxy, C1-C4 haloalkoxy, phenyl or fluorophenyl;

R¹', R²', R³', R⁴' and R⁵' are each hydrogen; R¹¹', R¹²', R¹³' and R¹⁴' are selected, independently of each other, from the group consisting of hydrogen, halogen, cyano,

 $\begin{array}{c} C_1\text{-}C_4 \text{ alkyl and } C_1\text{-}C_4 \text{ alkoxy;} \\ R^{15'}, R^{16'}, R^{17'}, R^{18'}, R^{19'}, R^{20'}, R^{21'}, R^{22'}, R^{23'}, R^{24'} \text{ and } R^{25'} \end{array} \ 55$ are each independently selected from hydrogen, methyl, ethyl

R²³, R²⁴ and R²⁵ are each independently selected from hydrogen, fluorine, chlorine, bromine, methyl, ethyl and isopropyl;

 $\begin{array}{llll} & R^{26'} \ is \ N-OH, \ N-O-C_1-C_4 \ alkyl, \ N-O-C_2-C_4 \ alkenyl, \ N-O-C_2-C_4 \ alkynyl, \ N-O-C_1-C_4 \ haloalkyl, \ N-O-benzyl, \ N-O-phenyl, \ N-O-phenyl, \ N-O-phenyl, \ N-O-C_2-C_4 \ haloalkenyl, \ N-O-benzyl, \ N-O-phenyl, \ N-O-ph$ N—O-halophenyl, O, C_2 - C_4 alkenyloxy and $C(R^{36'})$; $R^{27'}, R^{28'}, R^{29'}, R^{30'}, R^{31'}, R^{32'}, R^{33'}, R^{34'}$ and $R^{35'}$ are each 65

hydrogen or methyl; or R²⁷ and R²⁸ together with the two carbon atoms to which they are attached form a double bond; 46

each R36' is independently selected from hydrogen, halogen and C_1 - C_4 alkyl;

R³⁷', R³⁸', R³⁹', R⁴⁰', R⁴¹', R⁴²', R⁴³' and R⁴⁴' are hydrogen; R^{45'}, R^{46'}, R^{47'}, R^{48'} and R^{49'} are independently selected from the group consisting of hydrogen, fluorine, chlorine, methyl, CF₃, CHF₂, CH₂F, methoxy, difluoromethoxy and

trifluoromethoxy; $R^{50'},R^{51'},R^{52'},R^{53'},R^{54'},R^{55'} \ and \ R^{56'} \ are each hydrogen;$ R⁵⁷, R⁵⁸, R⁵⁹ and R⁶⁰ are selected, independently of each other, from the group consisting of hydrogen and halogen;

provided that at least one of R⁵⁷, R⁵⁸, R⁵⁹ and R⁶⁰ is not

R⁶¹', R⁶²', R⁶³', R⁶⁴', R⁶⁵', R⁶⁶', R⁶⁷' and R⁶⁸' are hydrogen; R⁶⁹ is hydrogen;

n is 0 or 1;

p and q are independently selected from 0 and 1; r, s and t are each 0.

In another preferred group of compounds, R⁵ is G¹. In another preferred group of compounds, R⁵ is G². In another preferred group of compounds, R⁵ is G³-G⁴. In another preferred group of compounds, R^5 is G^5 . In another preferred group of compounds, R⁵ is G⁶-G⁷. In another preferred group of compounds, R⁵ is G⁸. In another preferred group of compounds, R⁵ is G⁹. In another preferred group of compounds, R⁵ is G¹⁰-G¹¹. In another preferred group of compounds, R⁵ is G¹². In another preferred group of compounds, R⁵ is G¹³ In another preferred group of compounds, R⁵ is G¹⁴. In another preferred group of compounds, R⁵ is G¹⁵. In another preferred group of compounds, R⁵ is G¹⁶.

In a further group of compounds, R_1 is selected from R^{1a} and R^{1b} ;

R₂ is methyl;

 R_3 is selected from R^{3a} , R^{3b} , R^{3c} , R^{3d} , R^{3e} , R^{3f} , R^{3g} , R^{3h} , $\mathbf{R}^{3i}, \mathbf{R}^{3j}, \mathbf{R}^{3k}, \mathbf{R}^{3l}, \mathbf{R}^{3m}, \mathbf{R}^{3n}, \mathbf{R}^{3o}, \mathbf{R}^{3p}, \mathbf{R}^{3q}, \mathbf{R}^{3r}, \mathbf{R}^{3s}, \mathbf{R}^{3t};$

 $\begin{array}{c} R_4 \text{ is selected from } R_{4a}, R_{4b}, R_{4c}, R_{4d}, R_{4e}, R_{4f}; \\ R_5 \text{ is selected from } R^{5a}, R^{5b}, R^{5c}, R^{5d}, R^{5e}, R^{5f}, R^{5g}, R^{5h}, R^{5f}, R$ $R^{5ak}, R^{5al}, R^{5am}, R^{5aa}, R^{5bb}, R^{5cc}, R^{5dd}, R^{5ee}, R^{5ff}, R^{5gg}, R^{5hh}$ R^{5jj} , R^{5kk} , R^{5ll} , R^{5mm} , R^{5nn} , R^{5oo} , R^{5pp} , R^{5qq} , R^{5rr} , R^{5ss} , R^{5tt} R^{5uu} , R^{5vv} , R^{5ww} , R^{5xx} , R^{5zz} , R^{5ba} , R^{5bc} , R^{5bd} , R^{5be} , R^{5bf} , $R^{5bq}, R^{5br}, R^{5bs}, R^{5bt}, R^{5bu}, R^{5bu}, R^{5bv}, R^{5bx}, R^{5by}, R^{5bz}, R^{5ca}$ R^{5cb}, R^{5cd}, R^{5ce}, R^{5cf}, R^{5cg}, R^{5bh}, R^{5ci}, R^{5cj}, R^{5ck}, R^{5cl}, R^{5cm} $R^{5cn}, R^{5co}, R^{5cp}, R^{5cq}, R^{5cr}, R^{5cr}, R^{5cs}, R^{5ct}, R^{5cu}, R^{5cv}, R^{5cw}, R^{5cw}$ $\begin{array}{l} R_{SCY}, R_{SCZ}, R_{Sda}, R_{Sdb}, R_{Sdc}, R_{Sde}, R_{Sde}, R_{Sdg}, R_{Sdh}, R_{Sdi}, R_{Sd$ R^{5eu}, R^{5ev}, R^{5ex}, R^{5ey}, R^{5ez}, R^{5fa}, R^{5fb}, R^{5fc}, R^{5fd}, R^{5fe}, R^{5fg}

 $R^{5fh}, R^{5fi}, R^{5fi}, R^{5fi}, R^{5fk}, R^{5fk}, R^{5fi}, R^{5fm}, R^{5fm}, R^{5fo}, R^{5fo}, R^{5fq}, R^{5fq}, R^{5fi}, R^{5fs},$

 R^{5ft} , R^{5fu} , R^{5fv} , R^{5fw} ; R_6 is selected from R^a , R^b and R^c ; R₇ is H:

 R^{1a} is selected from ethyl and isopropyl; R^{1b} is ethyl;

R^{3a} is selected from hydrogen, halogen, CN, methyl, ethyl, isopropyl, CCH, CH=CH₂, H₂C=C-(CH₃), cyclopropyl, halomethyl, haloethyl, methoxy, halomethoxy, ethoxy, haloethoxy, methlythio, halomethylthio, methylsulfinyl, halomethylsulfinyl, methylsulfonyl, halomethylsulfonyl, amino, methylamino, dimethylamino, ethylamino, diethylamino, ethylmethylamino, pyrrolidino, imidazolino, triazolino, CHO, CH₂OH, CH(OH)Me and CO-Me;

R^{3b} is selected from hydrogen, F, Cl, Br, I, cyano, methyl, ethyl, isopropyl, fluoromethyl, difluoromethyl, trifluoromethyl, (H₃C)—CHF, methoxy and ethoxy;

R^{3c} is selected from hydrogen, F. Br. I. methyl, ethyl, isopropyl, fluoromethyl, difluoromethyl, trifluoromethyl, (H_2C) —CHF, methoxy and ethoxy:

R^{3d} is selected from hydrogen, halogen, cyano, methyl, ethyl, isopropyl, C=CH, CH=CH₂, H₂C=C-(CH₃), cyclopropyl, halomethyl, haloethyl, methoxy, ethoxy, methlythio, halomethylthio, methylsulfinyl, halomethylsulfinyl, methylsulfonyl, halomethylsulfonyl,

amino, methylamino, dimethylamino, ethylamino, diethylamino, ethylmethylamino, pyrrolidino, imidazolino, triazolino, CHO and CO-Me;

R^{3b} is selected from hydrogen, F, Cl, Br, I, cyano, methyl, ethyl, isopropyl, fluoromethyl, difluoromethyl, trifluoromethyl, (H₃C)—CHF, methoxy and ethoxy;

R^{3c} is selected from hydrogen, F, Br, I, methyl, ethyl, isopropyl, fluoromethyl, difluoromethyl, trifluoromethyl, 20 (H₃C)—CHF, methoxy and ethoxy;

R^{3e} is selected from hydrogen, halogen, CN, methyl, ethyl, isopropyl, cyclopropyl, C=CH, CH=CH₂, C(CH₃)=CH₂, halomethyl, haloethyl, methoxy, ethoxy, methlythio, halomethylthio, methylsulfinyl, halomethylsulfinyl, methylsulfo- 25 nyl, halomethylsulfonyl, amino, methylamino, dimethylamino, ethylamino, diethylamino, ethylmethylamino, pyrrolidino, imidazolino, triazolino, CHO, CH2OH, CH(OH) Me and CO-Me:

R³f is selected from hydrogen, halogen, CN, methyl, ethyl, isopropyl, cyclopropyl, C=CH, CH=CH₂, C(CH₃)=CH₂, halomethyl, haloethyl, methoxy, ethoxy, methlythio, methylsulfinyl and methylsulfonyl;

R^{3g} is selected from hydrogen, F, Br, I, methyl, ethyl, 35 ethyl and polyfluoromethyl isopropyl, cyclopropyl, C = CH, $CH = CH_2$, $C(CH_3) = CH_2$, CF₃, CHF₂, CH₂F, —CHF—CH₃, —CF₂—CH₃, methoxy, ethoxy, methlythio, methylsulfinyl and methylsulfonyl;

R^{3h} is selected from hydrogen, Br, I, methyl, ethyl, C=CH, CH=CH₂, C(CH₃)=CH₂, CF₃, CHF₂, CH₂F and methoxy; 40

R³ⁱ is selected from hydrogen, halogen, CN, methyl, ethyl, isopropyl, cyclopropyl, C=CH, CH=CH₂, C(CH₃)=CH₂, halomethyl, haloethyl, methoxy, ethoxy, methlythio, halomethylthio, methylsulfinyl, halomethylsulfinyl, methylsulfonyl, halomethylsulfonyl, amino, methylamino, dimethy- 45 lamino, ethylamino, diethylamino, ethylmethylamino, pyrrolidino, imidazolino, triazolino, CHO and CO-Me;

R^{3j} is selected from hydrogen, halogen, CN, methyl, ethyl, isopropyl, halomethyl, haloethyl, methoxy and ethoxy;

R^{3k} is selected from hydrogen, halogen, methyl, ethyl, iso- 50 propyl, CH₂F, CHF₂, CF₃, CHF—CH₃, CF₂—CH₃, methoxy and ethoxy;

R³¹ is selected from hydrogen, halogen, methyl, ethyl, isopropyl, CH₂F, CHF₂, CF₃, CHF—CH₃, CF₂—CH₃, methoxy and ethoxy:

 \mathbb{R}^{3m} is selected from hydrogen, F, Br, I, methyl, ethyl, CHF₂ and methoxy;

 R^{3n} is selected from hydrogen, halogen, CN, methyl, ethyl, isopropyl, cyclopropyl, C=CH, CH=CH₂, C(CH₃)=CH₂, halomethyl, haloethyl, methoxy, ethoxy, methlythio, halom- 60 ethylthio, methylsulfinyl, halomethylsulfinyl, methylsulfonyl, halomethylsulfonyl, amino, methylamino, dimethylamino, ethylamino, diethylamino, ethylmethylamino, pyrrolidino, imidazolino, triazolino, CHO, CH₂OH, CH(OH) Me and CO-Me:

R³⁰ is selected from hydrogen, halogen, CN, methyl, ethyl, isopropyl, cyclopropyl, C=CH, CH=CH₂, C(CH₃)=CH₂,

48

halomethyl, haloethyl, methoxy, ethoxy, methlythio, halomethylthio, methylsulfinyl, halomethylsulfinyl, methylsulfonyl and halomethylsulfonyl;

R^{3p} is selected from hydrogen, F, Br, I, methyl, ethyl, isopropyl, cyclopropyl, C = CH, $CH = CH_2$, $C(CH_3) = CH_2$, halomethyl, haloethyl, methoxy and ethoxy;

 R^{3q} is selected from hydrogen, F, Br, I, methyl, ethyl, isopropyl, cyclopropyl, C=CH, CH=CH₂, C(CH₃)=CH₂, CF₃, CHF₂, CH₂F, —CHF—CH₃, —CF₂—CH₃, methoxy, ethoxy, methlythio, methylsulfinyl and methylsulfonyl;

R^{3r} is selected from hydrogen, Br, I, methyl, cyclopropyl, C=CH, CH=CH₂, CF₃, CHF₂, CH₂F, -CHF-CH₃, -CF₂—CH₃ and methoxy;

R^{3s} is selected from hydrogen, halogen, CN, methyl, ethyl, isopropyl, cyclopropyl, tert-butyl, C=CH, CH=CH₂, C(CH₃)=CH₂, halomethyl, haloethyl, methoxy, halomethoxy, ethoxy, haloethoxy, methlythio, halomethylthio, methylsulfinyl, halomethylsulfinyl, methylsulfonyl, halomethylsulfonyl, amino, methylamino, dimethylamino, ethylamino, diethylamino, ethylmethylamino, pyrrolidino, imidazolino, triazolino, CHO and C(=O)Me;

R^{3t} is selected from hydrogen, halogen, CN, methyl, ethyl, isopropyl, cyclopropyl, tert-butyl, C=CH, CH=CH₂, C(CH₃)=CH₂, halomethyl, haloethyl, methoxy, halomethoxy, ethoxy, haloethoxy, methlythio, halomethylthio, methylsulfinyl, halomethylsulfinyl, methylsulfonyl, halomethylsulfonyl, amino, methylamino, dimethylamino, ethylamino, diethylamino, ethylmethylamino, pyrrolidino, imidazolino, triazolino, CHO and C(=O)Me;

 R_{4a} is selected from F, Cl, Br, C_1 - C_4 alkyl, C_1 - C_4 alkenyl, C_1 - C_4 haloalkyl and C_1 - C_4 cycloalkyl;

R_{4b} is selected from F, Cl, methyl, ethyl, ethenyl, propyl, propenyl, isopropyl, isopropenyl, cyclopropanyl, methoxy, ethoxy, monofluoromethyl, polyfluoromethyl, monofluoro-

R_{4c} is selected from methyl, ethyl, methoxy, F and Cl;

R_{4d} is selected from methyl, methoxy, F and Cl;

R_{4e} is selected from methyl;

 R_{4f} is selected from methoxy, F and Cl;

 R^{5a} is a 3- to 6-membered cycloalkenyl group, or a 3- to 6-membered cycloalkenyl group that can be mono- to polysubstituted by substituents independently selected from the group consisting of halogen, CN, NO₂, OH, SH, CHO, COOH, tri(C₁-C₆alkyl)silyl, ethyl, n-propyl, iso-propyl, n-butyl, iso-butyl, sec-butyl, tert-butyl, n-pentyl, —CH -CH-CH(CH₃)-CH₂- (CH_3) — CH_2 — CH_2 — CH_3 , CH_3 , $-CH_2$ $-CH_2$ $-CH(CH_3)$ $-CH_3$, $-CH_2$ $-CH_2$ $-CH_3$ $(\mathrm{CH_3})_2, \quad -\mathrm{CH}(\mathrm{CH_3}) - \mathrm{CH}(\mathrm{CH_3})_2, \quad \mathrm{C_1\text{-}C_6} \text{ haloalkyl}, \quad \mathrm{C_3\text{-}C_6}$ cycloalkyl, $\mathrm{C_3\text{-}C_6}$ halocycloalkyl, $\mathrm{C_2\text{-}C_6}$ alkenyl, $\mathrm{C_2\text{-}C_6}$ haloalkenyl, C₁-C₆alkoxy, C₁-C₆ haloalkoxy, C₂-C₇ alkylcarbonyl, C_2 - C_7 alkoxycarbonyl, C_4 - C_7 alkenyloxycarbonyl, C_4 $C_7\,alkynyloxycarbonyl, C_1\text{-}C_6\,alkylthio, C_1\text{-}C_6\,alkylsulfinyl,$ C_1 - C_6 alkylsulfonyl, $-C(=O)NH_2$, $-C(=O)NH(CH_3)$, $-C(=O)N(CH_3)_2$ and $-C(=S)NH_2$;

R^{\$b\$} is a 3- to 6-membered cycloalkenyl group, or a 3- to 6-membered cycloalkenyl group that can be mono- to polysubstituted by substituents independently selected from the group consisting of halogen, ethyl, n-propyl, iso-propyl, n-butyl, iso-butyl, sec-butyl, tert-butyl, n-pentyl, —CH (CH₃)—CH₂—CH₂—CH₃, —CH—CH(CH₃)—CH₂—CH₃, —CH₂—CH₂—CH₄, —CH₂—CH₂—CH₄, —CH₂—CH₂—CH₄ (CH₃)₂, —CH(CH₃)—CH(CH₃)₂, C₁-C₆ haloalkyl, C₁-C₆ alkoxy and C₁-C₆ alkylthio;

R^{5c} is a 3- to 6-membered cycloalkenyl group, or a 3- to 6-membered cycloalkenyl group that can be mono- to polysubstituted by substituents independently selected from the group consisting of halogen, ethyl, n-propyl, iso-propyl,

n-butyl, iso-butyl, sec-butyl, tert-butyl, n-pentyl, —CH (CH₃)—CH₂—CH₂—CH₃, —CH—CH(CH₃)—CH₂—CH₃, —CH₂—CH₂—CH (CH₃)—CH₃, —CH₂—CH₂—CH (CH₃)₂, —CH(CH₃)—CH(CH₃)₂, C₁-C₆-fluoroalkyl, C₁-C₆ alkoxy and C₁-C₆ alkylthio;

R^{5d} is a 5-membered cycloalkenyl group, or a 5-membered cycloalkenyl group that can be mono- to polysubstituted by substituents independently selected from the group consisting of halogen, CN, NO2, OH, SH, CHO, COOH, tri(C1-C₆alkyl)silyl, ethyl, n-propyl, iso-propyl, n-butyl, iso-butyl, sec-butyl, tert-butyl, n-pentyl, —CH(CH₃)—CH₂—CH₂ CH_3 , $-CH-CH(CH_3)-CH_2-CH_3$, $-CH_2-CH_2-CH_3$ (CH_3) — CH_3 , — CH_2 — CH_2 — $CH(CH_3)_2$, — $CH(CH_3)$ -CH(CH₃)₂, C₁-C₆ haloalkyl, C₃-C₆ cycloalkyl, C₃-C₆ haloalkenyl, C₂-C₆ haloalkenyl, C₁-C₆ alkoxy, C_1 - C_6 haloalkoxy, C_2 - C_7 alkylcarbonyl, C_2 - C_7 alkoxycarbonyl, C₄-C₇ alkenyloxycarbonyl, C₄-C₇ alkynyloxycarbonyl, C₁-C₆ alkylthio, C₁-C₆ alkylsulfinyl, C₁-C₆ alkylsulfonyl, $-C(=O)NH(CH_3),$ $-C(=O)NH_2$ $-C(=O)N(CH_3)_2$ and $-C(=S)NH_2$;

 R^{5e} is a 5-membered cycloalkenyl group, or a 5-membered cycloalkenyl group that can be mono- to polysubstituted by substituents independently selected from the group consisting of halogen, ethyl, n-propyl, iso-propyl, n-butyl, iso-butyl, sec-butyl, tert-butyl, n-pentyl, —CH(CH₃)—CH₂—CH₂—CH₂—CH₃, —CH—CH(CH₃)—CH₂—CH₂—CH₂—CH(CH₃)—CH₂—CH(CH₃)—CH(CH₃)—CH(CH₃)—CH(CH₃)—CH(CH₃)—CH(CH₃), —CH(CH₃)—CH(CH₃), alkoyt and C₁-C₆ alkylthio;

 R^{5f} is a 5-membered cycloalkenyl group, or a 5-membered 30 cycloalkenyl group that can be mono- to polysubstituted by substituents independently selected from the group consisting of halogen, ethyl, n-propyl, iso-propyl, n-butyl, iso-butyl, sec-butyl, tert-butyl, n-pentyl, —CH(CH_3)—CH_2—CH_2—CH_3, —CH—CH(CH_3)—CH_2—CH_3, —CH_2—CH_2—CH 35 (CH_3)—CH_3, —CH_2—CH_2—CH_2—CH(CH_3)_2, —CH(CH_3)—CH(CH_3)_2, C_1-C_6-fluoroalkyl, C_1-C_6 alkoxy and C_1-C_6 alkyIthio;

R^{59g} is a 6-membered cycloalkenyl group, or a 6-membered cycloalkenyl group that can be mono- to polysubsti- 40 tuted by substituents independently selected from the group consisting of halogen, CN, NO2, OH, SH, CHO, COOH, tri(C₁-C₆alkyl)silyl, ethyl, n-propyl, iso-propyl, n-butyl, isobutyl, sec-butyl, tert-butyl, n-pentyl, —CH(CH₃)—CH₂- $-CH-CH(CH_3)-CH_2-CH_3$, CH_2 — CH_3 , $-CH_2$ CH_2 — $CH(CH_3)$ — CH_3 , — CH_2 — CH_2 — $CH(CH_3)_2$, —CH (CH_3) — $CH(CH_3)_2$, C_1 - C_6 haloalkyl, C_3 - C_6 cycloalkyl, C_3 - C_6 halocycloalkyl, C_2 - C_6 alkenyl, C_2 - C_6 haloalkenyl, $\mathrm{C_1\text{-}C_6\,alkoxy}, \mathrm{C_1\text{-}C_6\,haloalkoxy}, \mathrm{C_2\text{-}C_7\,alkylcarbonyl}, \mathrm{C_2\text{-}C_7}$ alkoxycarbonyl, C₄ C₇ alkenyloxycarbonyl, C₄ C₇ alkyny- 50 loxycarbonyl, C₁-C₆ alkylthio, C₁-C₆ alkylsulfinyl, C₁-C₆ alkylsulfonyl, $-C(=O)NH_2$ $-C(=O)NH(CH_3),$ $-C(=O)N(CH_3)$, and $-C(=S)NH_2$;

R^{sh} is a 6-membered cycloalkenyl group, or a 6-membered cycloalkenyl group that can be mono- to polysubstituted by 55 substituents independently selected from the group consisting of halogen, ethyl, n-propyl, iso-propyl, n-butyl, iso-butyl, sec-butyl, tert-butyl, n-pentyl, —CH(CH₃)—CH₂—CH₂—CH₃, —CH—CH(CH₃)—CH₂—CH₂—CH₂—CH (CH₃)—CH₃, —CH₂—CH₂—CH (CH₃)—CH₃, —CH(CH₃)—60 CH(CH₃)₂, C₁-C₆ haloalkyl, C₁-C₆ alkoxy and C₁-C₆ alkylthio;

R^{5j} is a 6-membered cycloalkenyl group, or a 6-membered cycloalkenyl group that can be mono- to polysubstituted by substituents independently selected from the group consisting of halogen, ethyl, n-propyl, iso-propyl, n-butyl, iso-butyl, sec-butyl, tert-butyl, n-pentyl, —CH(CH₃)—CH₂—CH₂—CH₂—

 $\begin{array}{llll} CH_3, & -CH-CH(CH_3)-CH_2-CH_3, & -CH_2-CH_2-CH\\ (CH_3)-CH_3, & -CH_2-CH_2-CH(CH_3)_2, & -CH(CH_3)-CH(CH_3)_2, & -CH(CH_3)_2, & -CH$

 $m R^{5k}$ is a 3- to 7-membered cycloalkyl group, or a 3- to 7-membered cycloalkyl group that can be mono- to polysubstituted by substituents independently selected from the group consisting of halogen, CN, NO₂, OH, SH, CHO, COOH, $\rm tri(C_1\text{-}C_6 alkyl)silyl$, ethyl, n-propyl, iso-propyl, n-butyl, iso-butyl, sec-butyl, $\rm tert$ -butyl, n-pentyl, —CH (CH₃)—CH₂—CH₂—CH₂—CH₃, —CH—CH(CH₃)—CH₂—CH₂—CH (CH₃), —CH₂—CH₂—CH (CH₃)₂, —CH(CH₃)—CH(CH₃)₂, C₁-C₆ haloalkyl, C₃-C₆ cycloalkyl, C₃-C₆ halocycloalkyl, C₂-C₆ alkenyl, C₂-C₆ haloalkenyl, C₁-C₆ alkoxy, C₁-C₆ haloalkoxy, C₂-C₇ alkylcarbonyl, C₂-C₇ alkoxycarbonyl, C₄-C₇ alkenyloxycarbonyl, C₄-C₇ alkynyloxycarbonyl, C₁-C₆ alkylthio, C₁-C₆ alkylsulfinyl, C₁-C₆ alkylsulfonyl, —C(—O)NH₂, —C(—O)NH (CH₃), —C(—O)N(CH₃)₂ and —C(—S)NH₂;

 R^{37} is a 3- to 7-membered cycloalkyl group, or a 3- to 7-membered cycloalkyl group that can be mono- to polysubstituted by substituents independently selected from the group consisting of halogen, ethyl, n-propyl, iso-propyl, n-butyl, iso-butyl, sec-butyl, tert-butyl, n-pentyl, —CH (CH₃)—CH₂—CH₂—CH₃, —CH—CH(CH₃)—CH₂—CH₂—CH (CH₃)—CH₂—CH₂—CH (CH₃), —CH₂—CH₂—CH (CH₃)₂, —CH(CH₃)—CH(CH₃)₂, C₁-C₆ haloalkyl, C₁-C₆ alkoxy and C₁-C₆ alkylthio;

R^{5m} is a 3- to 7-membered cycloalkyl group, or a 3- to 7-membered cycloalkyl group that can be mono- to polysubstituted by substituents independently selected from the group consisting of halogen, ethyl, n-propyl, iso-propyl, n-butyl, iso-butyl, sec-butyl, tert-butyl, n-pentyl, —CH (CH₃)—CH₂—CH₂—CH₃, —CH—CH(CH₃)—CH₂—CH₂—CH (CH₃)—CH₂—CH₂—CH (CH₃), —CH₂—CH₂—CH (CH₃)₂, —CH(CH₃)—CH(CH₃)₂, C₁-C₆-fluoroalkyl, C₁-C₆ alkoxy and C₁-C₆ alkylthio;

 $R^{5\hat{n}}$ is a 3-membered cycloalkyl group, or a 3-membered cycloalkyl group that can be mono- to polysubstituted by substituents independently selected from the group consisting of halogen, CN, NO2, OH, SH, CHO, COOH, tri(C_1-C_6alkyl)silyl, ethyl, n-propyl, iso-propyl, n-butyl, iso-butyl, sec-butyl, tert-butyl, n-pentyl, —CH(CH_3)—CH_2—CH_2—CH_3, —CH—CH(CH_3)—CH_2—CH_2—CH(CH_3), —CH_2—CH_2—CH(CH_3), —CH(CH_3)—CH_2—CH_2—CH(CH_3), C_1-C_6 haloalkyl, C_3-C_6 cycloalkyl, C_3-C_6 halocycloalkyl, C_2-C_6 alkenyl, C_2-C_6 haloalkenyl, C_1-C_6 alkoxy, C_1-C_6 haloalkoxy, C_2-C_7 alkylcarbonyl, C_2-C_7alkoxycarbonyl, C_4 C_7 alkenyloxycarbonyl, C_4 C_7 alkynyloxycarbonyl, C_1-C_6 alkylthio, C_1-C_6 alkylsulfinyl, C_1-C_6 alkylsulfonyl, —C(=O)NH_2, —C(=O)NH(CH_3), —C(=O)N(CH_3)_2 and —C(=S)NH_2; R^5o is a 3-membered cycloalkyl group, or a 3-membered

R^{5o} is a 3-membered cycloalkyl group, or a 3-membered cycloalkyl group that can be mono- to polysubstituted by substituents independently selected from the group consisting of halogen, ethyl, n-propyl, iso-propyl, n-butyl, iso-butyl, sec-butyl, tert-butyl, n-pentyl, —CH(CH₃)—CH₂—CH₂—CH₂—CH₃, —CH—CH(CH₃)—CH₂—CH₂—CH₂—CH(CH₃)—CH₂—CH(CH₃)—CH(CH₃)—CH(CH₃)—CH(CH₃)—CH(CH₃), —CH(CH₃)—CH(CH₃), alkylthio;

R^{5p} is a 3-membered cycloalkyl group, or a 3-membered cycloalkyl group that can be mono- to polysubstituted by substituents independently selected from the group consisting of halogen, ethyl, n-propyl, iso-propyl, n-butyl, iso-butyl, sec-butyl, tert-butyl, n-pentyl, —CH(CH₃)—CH₂—CH₂—CH₂—CH₃, —CH—CH(CH₃)—CH₂—CH₂—CH₂—CH

(CH₃)—CH₃, —CH₂—CH₂—CH(CH₃)₂, —CH(CH₃)— CH(CH₃)₂, C_1 - C_6 fluoroalkyl, C_1 - C_6 alkoxy and C_1 - C_6 alkylthio;

R^{5q} is a 4-membered cycloalkyl group, or a 4-membered cycloalkyl group that can be mono- to polysubstituted by substituents independently selected from the group consisting of halogen, CN, NO₂, OH, SH, CHO, COOH, tri(C₁-C₆alkyl)silyl, ethyl, n-propyl, iso-propyl, n-butyl, iso-butyl, sec-butyl, tert-butyl, n-pentyl, —CH(CH₃)—CH₂—CH₂—CH₂—CH₃, —CH—CH(CH₃)—CH₂—CH₂—CH₂—CH(CH₃)—CH₂—CH₂—CH(CH₃)—CH(CH₃)—CH(CH₃)—CH(CH₃)—CH(CH₃)—CH₂—CH₂—CH(CH₃)—CH(CH₃)—CH(CH₃)—CH₂—CH₂—CH₂—CH₂—CH₂—CH₂—CH₂—CH₂—CH₂—CH₂—CH₃—CH₃—CH₃—CH₃—CH₃—CH₃—CH₃—CH₄—CH₃—CH₄—CH₃—CH₄—CH

 R^{5r} is a 4-membered cycloalkyl group, or a 4-membered 20 cycloalkyl group that can be mono- to polysubstituted by substituents independently selected from the group consisting of halogen, ethyl, n-propyl, iso-propyl, n-butyl, iso-butyl, sec-butyl, tert-butyl, n-pentyl, —CH(CH_3)—CH_2—CH_2—CH_3, —CH—CH(CH_3)—CH_2—CH_3, —CH_2—CH_2—CH 25 (CH_3)—CH_3, —CH_2—CH_2—CH(CH_3)_2, —CH(CH_3)—CH(CH_3)_2, C_1-C_6 haloalkyl, C_1-C_6 alkoxy and C_1-C_6 alkylthio;

 R^{5s} is a 4-membered cycloalkyl group, or a 4-membered cycloalkyl group that can be mono- to polysubstituted by substituents independently selected from the group consisting of halogen, ethyl, n-propyl, iso-propyl, n-butyl, iso-butyl, sec-butyl, tert-butyl, n-pentyl, —CH(CH₃)—CH₂—CH₂—CH₂—CH₃, —CH—CH(CH₃)—CH₂—CH₂—CH₂—CH(CH₃)—CH₂—CH(CH₃)—CH₂—CH(CH₃)—CH₃—CH₄—C

Ř⁵^t is a 5-membered cycloalkyl group, or a 5-membered cycloalkyl group that can be mono- to polysubstituted by substituents independently selected from the group consisting of halogen, CN, NO₂, OH, SH, CHO, COOH, tri(C₁-C₆alkyl)silyl, ethyl, n-propyl, iso-propyl, n-butyl, iso-butyl, sec-butyl, tert-butyl, n-pentyl, —CH(CH₃)—CH₂—CH₂—CH₃, —CH—CH(CH₃)—CH₂—CH₄—CH₂—CH₄—CH₂—CH₄—C

 $R^{\hat{s}u}$ is a 5-membered cycloalkyl group, or a 5-membered cycloalkyl group that can be mono- to polysubstituted by substituents independently selected from the group consisting of halogen, ethyl, n-propyl, iso-propyl, n-butyl, iso-butyl, sec-butyl, tert-butyl, n-pentyl, —CH(CH₃)—CH₂—CH₂—CH₃, —CH—CH(CH₃)—CH₂—CH₂—CH₂—CH(CH₃)—CH₂—CH(CH₃)—CH₂—CH(CH₃)—CH₂—CH₂—CH₂—CH(CH₃)—CH(CH₃)—CH(CH₃)—CH(CH₃)—CH(CH₃)—CH(CH₃)—CH(CH₃)—CH₂—CH₂—CH₂—CH₂—CH(CH₃)—CH(CH₃)—CH(CH₃)—CH₂—CH

R^{5v} is a 5-membered cycloalkyl group, or a 5-membered cycloalkyl group that can be mono- to polysubstituted by substituents independently selected from the group consisting of halogen, ethyl, n-propyl, iso-propyl, n-butyl, iso-butyl, sec-butyl, tert-butyl, n-pentyl, —CH(CH₃)—CH₂—CH₂—CH₂—CH₃, —CH—CH(CH₃)—CH₂—CH₂—CH₂—CH

(CH₃)—CH₃, —CH₂—CH₂—CH(CH₃)₂, —CH(CH₃)— CH(CH₃)₂, C_1 - C_6 fluoroalkyl, C_1 - C_6 alkoxy and C_1 - C_6 alkylthio;

R^{5x} is a 6-membered cycloalkyl group, or a 6-membered cycloalkyl group that can be mono- to polysubstituted by substituents independently selected from the group consisting of halogen, CN, NO₂, OH, SH, CHO, COOH, tri(C₁-Cealkyl)silyl, ethyl, n-propyl, iso-propyl, n-butyl, iso-butyl, sec-butyl, tert-butyl, n-pentyl, —CH(CH₃)—CH₂—CH₂ CH₃, —CH—CH(CH₃)—CH₂—CH₃, —CH₂—CH₂—CH (CH_3) — CH_3 , — CH_2 — CH_2 — $CH(CH_3)_2$, — $CH(CH_3)$ -CH(CH₃)₂, C₁-C₆ haloalkyl, C₃-C₆ cycloalkyl, C₃-C₆ halocycloalkyl, C2-C6 alkenyl, C2-C6 haloalkenyl, C1-C6 C_1 - C_6 haloalkoxy, C_2 - C_7 alkylcarbonyl, C_2 - C_7 alkoxycarbonyl, C_4 - C_7 alkenyloxycarbonyl, C_4 - C_7 alkynyloxycarbonyl, C₁-C₆ alkylthio, C₁-C₆ alkylsulfinyl, C_1 - C_6 alkylsulfonyl, $-C(=O)NH_2$, $-C(=O)NH(CH_3)$, $-C(=O)N(CH_3)_2$ and $-C(=S)NH_2$;

R^{5y} is a 6-membered cycloalkyl group, or a 6-membered cycloalkyl group that can be mono- to polysubstituted by substituents independently selected from the group consisting of halogen, ethyl, n-propyl, iso-propyl, n-butyl, iso-butyl, sec-butyl, tert-butyl, n-pentyl, —CH(CH₃)—CH₂—CH₂—CH₂—CH₃, —CH—CH(CH₃)—CH₂—CH₂—CH₂—CH₄—CH₂—CH₂—CH₂—CH₃—CH(CH₃)—CH₃—CH₄—CH₂—CH(CH₃)—CH(CH₃)—CH₆ haloalkyl, C₁-C₆ alkoxy and C₁-C₆ alkylthio;

 R^{5z} is a 6-membered cycloalkyl group, or a 6-membered cycloalkyl group that can be mono- to polysubstituted by substituents independently selected from the group consisting of halogen, ethyl, n-propyl, iso-propyl, n-butyl, iso-butyl, sec-butyl, tert-butyl, n-pentyl, $-CH(CH_3)-CH_2-CH_2-CH_3$, $-CH-CH(CH_3)-CH_2-CH_3$, $-CH_2-CH_2-CH_3$, $-CH_2-CH_3$, $-CH_3-CH_3$, $-CH_3-CH_3$, $-CH_3-CH_3$, $-CH_3$

R^{5ab} is a 7-membered cycloalkyl group, or a 7-membered cycloalkyl group that can be mono- to polysubstituted by substituents independently selected from the group consisting of halogen, CN, NO₂, OH, SH, CHO, COOH, tri(C₁-C₆ alkyl)silyl, ethyl, n-propyl, iso-propyl, n-butyl, iso-butyl, secbutyl, tert-butyl, n-pentyl, — $CH(CH_3)$ — CH_2 — CH_2 — CH_3 , -CH $-CH(CH_3)$ $-CH_2$ $-CH_3$, --CH2---CH2---CH $-CH_2$ $-CH_2$ $-CH(CH_3)_2$, $-CH(CH_3)$ (CH_3) — CH_3 , CH(CH₃)₂, C₁-C₆ haloalkyl, C₃-C₆ cycloalkyl, C₃-C₆ halocycloalkyl, C₂-C₆ alkenyl, C₂-C₆ haloalkenyl, C₁-C₆ alkoxy, C₁-C₆ haloalkoxy, C₂-C₇ alkylcarbonyl, C₂-C₇ alkoxycarbonyl, C_4 - C_7 alkenyloxycarbonyl, C_4 - C_7 alkynyloxycarbonyl, C₁-C₆ alkylthio, C₁-C₆ alkylsulfinyl, C₁-C₆ alkylsulfonyl, $-C(=O)NH_2$, $-C(=O)NH(CH_3)$, $-C(=O)N(CH_3)_2$ and $-C(=S)NH_2;$

 $R^{\hat{s}ac}$ is a 7-membered cycloalkyl group, or a 7-membered cycloalkyl group that can be mono- to polysubstituted by substituents independently selected from the group consisting of halogen, ethyl, n-propyl, iso-propyl, n-butyl, iso-butyl, sec-butyl, tert-butyl, n-pentyl, —CH(CH₃)—CH₂—CH₂—CH₂—CH₃, —CH—CH(CH₃)—CH₂—CH₂—CH₂—CH(CH₃)—CH₂—CH(CH₃)—CH(CH₃)—CH(CH₃)—CH(CH₃)—CH(CH₃)—CH(CH₃), —CH(CH₃)—CH(CH₃), alkoyy and C₁-C₆ alkylthio;

R^{5ad} is a 7-membered cycloalkyl group, or a 7-membered cycloalkyl group that can be mono- to polysubstituted by substituents independently selected from the group consisting of halogen, ethyl, n-propyl, iso-propyl, n-butyl, iso-butyl, sec-butyl, tert-butyl, n-pentyl, —CH(CH₃)—CH₂—CH₂—CH₂—CH₃, —CH—CH(CH₃)—CH₂—CH₂—CH₂—CH

 (CH_3) — CH_3 , — CH_2 — CH_2 — $CH(CH_3)_2$, — $CH(CH_3)$ — $CH(CH_3)_2$, C_1 - C_6 fluoroalkyl, C_1 - C_6 alkoythio:

R⁵ae is G⁸ wherein R¹, R², R³, R⁴ and R⁵ are each independently selected from hydrogen, fluoro, C₁-C₄ alkyl, C₁-C₄ baloalkyl, C₂-C₄ alkoxy and C₂-C₄ alkylthio:

haloalkyl, C₁-C₄ alkoxy and C₁-C₄ alkylthio; and wherein R¹¹', R¹²', R¹³' and R¹⁴' are each independently selected from hydrogen, halogen, CN, NO₂, OH, SH, CHO, C(=O)NH₂, C(=O)NH(CH₃), C(=O)N(CH₃)₂, C(=S)NH₂, C(=S)NH(CH₃), C(=S)N(CH₃)₂, SO₂NH₂, 10 SO₂NH(CH₃), SO₂N(CH₃)₂, C₁-C₆ alkyl, C₁-C₆ haloalkyl, C₃-C₆ cycloalkyl, C₂-C₆ alkenyl, C₂-C₆ haloalkenyl, C₂-C₆ alkynyl, C₂-C₆ haloalkynyl, C₁-C₆ alkoxy, C₁-C₆ haloalkoxy, C₃-C₆ cycloalkoxy, C₃-C₆ haloalkenyloxy, C₃-C₆ alkynyloxy, C₃-C₆ cycloalkoxy, C₃-C₆ haloalkylniloxy, C₁-C₆ alkylthio, 15 C₁-C₆ haloalkylthio, C₁-C₆ alkylsulfinyl, C₁-C₆ haloalkylsulfinyl, C₁-C₆ haloalkylsulfinyl, C₁-C₆ alkylsulfonyl and C₁-C₆ haloalkylsulfonyl; R^{5af} is G⁸ wherein R¹', R²', R³', R⁴' and R⁵' are each inde-

R^{5af} is G⁸ wherein R¹', R²', R³', R⁴' and R⁵' are each independently selected from hydrogen, fluoro, C₁-C₄ alkyl, C₁-C₄ haloalkyl, C₂-C₄ alkoxy and C₂-C₄ alkylthio

haloalkyl, C_1 - C_4 alkoxy and C_1 - C_4 alkylthio; and wherein $R^{11'}$, $R^{12'}$, $R^{13'}$ and $R^{14'}$ are each independently selected from hydrogen, halogen, C_1 - C_6 alkyl, C_1 - C_6 haloalkyl, C_1 - C_6 alkoxy and C_1 - C_6 alkylthio;

R^{5ag} is G⁸ wherein R¹', R²', R³', R⁴' and R⁵' are each independently selected from hydrogen, fluoro, methyl, ethyl, 25 CH₂F, CHF₂, CF₃, CHF—CH₃, CF₂—CH₃, methoxy, ethoxy, S—CH₃ and S—CH₂CH₃;

and wherein $R^{11'}$, $R^{12'}$, $R^{13'}$ and $R^{14'}$ are each independently selected from hydrogen, halogen, C_1 - C_4 alkyl, C_1 - C_4 haloalkyl, C_1 - C_4 alkoxy and C_1 - C_4 alkylthio;

haloalkyl, C_1 - C_4 alkoxy and C_1 - C_4 alkylthio; R^{5ah} is G^8 wherein R^1 ', R^2 ', R^3 ', R^4 ' and R^5 ' are each independently selected from hydrogen, fluoro, methyl, CHF₂, CF₃ and methoxy;

and wherein R¹¹', R¹²', R¹³' and R¹⁴' are each independently selected from hydrogen, halogen, CN, NO₂, OH, SH, 35 CHO, C(=O)NH₂, C(=O)NH(CH₃), C(=O)N(CH₃)₂, C(=S)NH₂, C(=S)NH(CH₃), C(=S)N(CH₃)₂, SO₂NH₂, SO₂NH(CH₃), SO₂N(CH₃)₂, C₁-C₆ alkyl, C₁-C₆ haloalkyl, C₃-C₆ cycloalkyl, C₂-C₆ alkenyl, C₂-C₆ haloalkenyl, C₂-C₆ alkynyl, C₂-C₆ haloalkenyl, C₁-C₆ alkynyl, C₂-C₆ alkenyloxy, C₃-C₆ alkenyloxy, C₃-C₆ alkenyloxy, C₃-C₆ alkenyloxy, C₃-C₆ alkynyloxy, C₃-C₆ cycloalkoxy, C₃-C₆ haloalkenyloxy, C₃-C₆ alkylthio, C₁-C₆ haloalkylthio, C₁-C₆ haloalkylthio, C₁-C₆ haloalkylsulfonyl;

sulfinyl, C_1 - C_6 alkylsulfonyl and C_1 - C_6 haloalkylsulfonyl; R^{5aj} is G^8 wherein R^1 , R^2 , R^3 , R^4 and R^5 are each independently selected from hydrogen, fluoro, methyl, CHF₂, CF₂ and methoxy;

and wherein R^{11} , R^{12} , R^{13} and R^{14} are each independently selected from hydrogen, halogen, C_1 - C_6 alkyl, C_1 - C_6 haloalkyl, C_1 - C_6 alkoxy and C_1 - C_6 alkylthio;

R^{5ak} is G⁸ wherein R¹, R², R³, R⁴ and R⁵ are each independently selected from hydrogen, fluoro, methyl, CHF₂, CF₃ and methoxy;

and wherein $R^{11'}$, $R^{12'}$, $R^{13'}$ and $R^{14'}$ are each independently selected from hydrogen, halogen, C_1 - C_4 alkyl, C_1 - C_4 55 haloalkyl, C_1 - C_4 alkoxy and C_1 - C_4 alkylthio;

 R^{5al} is G^8 wherein $R^{1'}$, $R^{2'}$, $R^{3'}$, $R^{4'}$ and $R^{5'}$ are each hydrogen.

and wherein R¹¹', R¹²', R¹³' and R¹⁴' are each independently selected from hydrogen, halogen, CN, NO₂, OH, SH, 60 CHO, C(=O)NH₂, C(=O)NH(CH₃), C(=O)N(CH₃)₂, C(=S)NH₂, C(=S)NH(CH₃), C(=S)N(CH₃)₂, SO₂NH₂, SO₂NH(CH₃), SO₂N(CH₃)₂, C₁-C₆ alkyl, C₁-C₆ haloalkyl, C₃-C₆ cycloalkyl, C₂-C₆ alkenyl, C₂-C₆ haloalkenyl, C₂-C₆ alkynyl, C₂-C₆ haloalkynyl, C₁-C₆ alkoxy, C₁-C₆ haloalkoxy, C₃-C₆ alkenyloxy, C₃-C₆ alkenyloxy, C₃-C₆ haloalkoxy, C₁-C₆ alkylthio,

 C_1 - C_6 haloalkylthio, C_1 - C_6 alkylsulfinyl, C_1 - C_6 haloalkylsulfinyl, C_1 - C_6 alkylsulfonyl and C_1 - C_6 haloalkylsulfonyl;

 R^{5am} is G^8 wherein $R^{1'}$, $R^{2'}$, $R^{3'}$, $R^{4'}$ and $R^{5'}$ are each hydrogen:

and wherein R¹¹', R¹²', R¹³' and R¹⁴' are each independently selected from hydrogen, halogen, C₁-C₆ alkyl, C₁-C₆ haloalkyl, C₁-C₆ alkoxy and C₁-C₆ alkylthio:

haloalkyl, C_1 - C_6 alkoxy and C_1 - C_6 alkylthio; R^{5aa} is G^8 wherein $R^{1'}$, $R^{2'}$, $R^{3'}$, $R^{4'}$ and $R^{5'}$ are each hydrogen:

and wherein $R^{11'}$, $R^{12'}$, $R^{13'}$ and $R^{14'}$ are each independently selected from hydrogen, halogen, C_1 - C_4 alkyl, C_1 - C_4 haloalkyl, C_1 - C_4 alkoxy and C_1 - C_4 alkylthio;

R^{5bb} is a benzyl group, wherein the phenyl ring is substituted by at least one fluorine and optionally by one or more groups independently selected from the group consisting of hydrogen, halogen, CN, NO₂, OH, SH, CHO, C(=O)NH₂, C(=O)NH(CH₃), C(=O)N(CH₃)₂, C(=S)NH₂, C(=S)NH₄ (CH₃), C(=S)N(CH₃)₂, SO₂NH₂, SO₂NH(CH₃), SO₂N (CH₃)₂, C₁-C₆ alkyl, C₁-C₆ haloalkyl, C₃-C₆ cycloalkyl, C₂-C₆ alkenyl, C₂-C₆ haloalkenyl, C₂-C₆ alkynyl, C₂-C₆ haloalkenyl, C₃-C₆ alkynyl, C₃-C₆ cycloalkoxy, C₃-C₆ haloalkenyloxy, C₃-C₆ alkynyloxy, C₃-C₆ cycloalkoxy, C₃-C₆ haloalkenyloxy, C₁-C₆ alkylthio, C₁-C₆ haloalkylthio, C₁-C₆ haloalkylsulfinyl, C₁-C₆ alkylsulfonyl and C₁-C₆ haloalkylsulfonyl;

R^{5cc} is a benzyl group, wherein the phenyl ring is substituted by at least one fluorine and optionally by one or more groups independently selected from the group consisting of hydrogen, halogen, CN, NO₂, OH, SH, CHO, C(=O)NH₂, C(=O)NH(CH₃), C(=O)N(CH₃)₂, C(=S)NH₂, C(=S)NH₃, C(=S)N(CH₃)₂, SO₂NH₂, SO₂NH(CH₃), SO₂N (CH₃)₂, C₁-C₆ alkyl, C₁-C₆ haloalkyl, C₃-C₆ cycloalkyl, C₂-C₆ alkenyl, C₂-C₆ haloalkenyl, C₂-C₆ alkynyl, C₁-C₆ alkylyloxy, C₁-C₆ alkylthio, C₁-C₆ alkylsulfinyl and C₁-C₆ alkylsulfonyl;

R^{5dd} is a benzyl group, wherein the phenyl ring is substituted by at least one fluorine and optionally by one or more groups independently selected from the group consisting of hydrogen, halogen, CN, C₁-C₆ alkyl, C₁-C₆ haloalkyl, C₃-C₆ cycloalkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl, C₁-C₆ alkoxy, C₃-C₆ alkenyloxy, C₃-C₆ alkynyloxy and C₁-C₆ alkylthio; R^{5ee} is a benzyl group, wherein the phonyl group is a least of the short ring is a least one short ring is a least ring is a least

 R^{5ee} is a benzyl group, wherein the phenyl ring is substituted by at least one fluorine and optionally by one or more groups independently selected from the group consisting of hydrogen, halogen, CN, C_1 - C_4 alkyl, C_1 - C_4 haloalkyl, C_2 - C_4 alkenyl, C_3 - C_6 cycloalkyl and C_1 - C_4 alkoxy;

R⁵/f is a benzyl group, wherein the methylene portion is substituted by at least one group independently selected from the group consisting of hydrogen, C₁-C₄ alkyl, C₁-C₄ haloalkyl, CN, C₁-C₄ alkoxy and C₁-C₄ haloalkoxy;

and wherein the phenyl ring is optionally substituted by one or more groups independently selected from the group consisting of hydrogen, halogen, CN, NO₂, OH, SH, CHO, C(=O)NH₂, C(=O)NH(CH₃), C(=O)N(CH₃)₂, C(=S) NH₂, C(=S)NH(CH₃), C(=S)N(CH₃)₂, SO₂NH₂, SO₂NH (CH₃), SO₂N(CH₃)₂, C₁-C₆ alkyl, C₁-C₆ haloalkyl, C₃-C₆ cycloalkyl, C₂-C₆ alkenyl, C₂-C₆ haloalkenyl, C₂-C₆ alkynyl, C₂-C₆ haloalkynyl, C₁-C₆ haloalkenyloxy, C₃-C₆ alkenyloxy, C₃-C₆ haloalkenyloxy, C₃-C₆ cycloalkoxy, C₃-C₆ haloalkenyloxy, C₃-C₆ haloalkylthio, C₁-C₆ haloalkylthio, C₁-C₆ haloalkylthio, C₁-C₆ alkylsulfinyl, C₁-C₆ alkylsulfonyl and C₁-C₆ haloalkylsulfonyl;

 R^{5gg} is a benzyl group, wherein the methylene portion is substituted by at least one group independently selected from the group consisting of hydrogen, C_1 - C_4 alkyl, C_1 - C_4 haloalkyl and C_1 - C_4 alkoxy;

and wherein the phenyl ring is optionally substituted by one or more groups independently selected from the group consisting of hydrogen, halogen, CN, NO₂, OH, SH, CHO, $C(=O)NH_2$, $C(=O)NH(CH_3)$, $C(=O)N(CH_3)_2$, C(=S)NH₂, C(=S)NH(CH₃), C(=S)N(CH₃)₂, SO₂NH₂, SO₂NH $\begin{array}{l} (CH_3),\ SO_2N(CH_3)_2,\ C_1\text{-}C_6\ alkyl,\ C_1\text{-}C_6\ haloalkyl,\ C_3\text{-}C_6\ cycloalkyl,\ C_2\text{-}C_6\ alkenyl,\ C_2\text{-}C_6\ haloalkenyl,\ C_2\text{-}C_6\ alkynyl, \end{array}$ C₁-C₆ alkoxy, C₁-C₆ haloalkoxy, C₃-C₆ alkenyloxy, C₃-C₆ alkynyloxy, C₃-C₆ eycloalkoxy, C₃-C₆ halocycloalkoxy, C₁-C₆ alkylthio, C₁-C₆ haloalkylthio, C₁-C₆ alkylsulfinyl, C₁-C₆ haloalkylsulfinyl, C₁-C₆ alkylsulfonyl and C₁-C₆ haloalkylsulfonyl;

55

 R^{5hh} is a benzyl group, wherein the methylene portion is substituted one group independently selected from the group consisting of C₁-C₄ alkyl, C₁-C₄ haloalkyl and C₁-C₄ alkoxy; and wherein the phenyl ring is optionally substituted by one or more groups independently selected from the group consisting of hydrogen, halogen, CN, NO2, OH, SH, CHO, $C(=O)NH_2$, $C(=O)NH(CH_3)$, $C(=O)N(CH_3)_2$, C(=S)NH₂, C(=S)NH(CH₃), C(=S)N(CH₃)₂, SO₂NH₂, SO₂NH 20 substituted one group independently selected from the group (CH₃), $SO_2N(CH_3)_2$, C_1 - C_6 alkyl, C_1 - C_6 haloalkyl, C_3 - C_6 cycloalkyl, C2-C6 alkenyl, C2-C6 haloalkenyl, C2-C6 alkynyl, C_2 - C_6 haloalkynyl, C_1 - C_6 alkoxy, C_1 - C_6 haloalkoxy, C_3 - C_6 alkenyloxy, C_3 - C_6 haloalkenyloxy, C_3 - C_6 alkynyloxy, C_3 - C_6 cycloalkoxy, C3-C6 halocycloalkoxy, C1-C6 alkylthio, C1-C6 25 haloalkylthio, C₁-C₆ alkylsulfinyl, C₁-C₆ haloalkylsulfinyl, C₁-C₆ alkylsulfonyl and C₁-C₆ haloalkylsulfonyl

 R^{5jj} is a benzyl group, wherein the methylene portion is substituted by one group independently selected from the group consisting of hydrogen, C₁-C₄ alkyl, C₁-C₄ haloalkyl 30 and C_1 - C_4 alkoxy;

and wherein the phenyl ring is optionally substituted by one or more groups independently selected from the group consisting of hydrogen, halogen, CN, NO2, OH, SH, CHO, $C(=O)NH_2$, $C(=O)NH(CH_3)$, $C(=O)N(CH_3)_2$, C(=S) NH_2 , $C(=S)NH(CH_3)$, $C(=S)N(CH_3)_2$, SO_2NH_2 , SO_2NH (CH₃), SO₂N(CH₃)₂, C₁-C₆ alkyl, C₁-C₆ haloalkyl, C₃-C₆ cycloalkyl, C2-C6 alkenyl, C2-C6 haloalkenyl, C2-C6 alkynyl, C_1 - C_6 alkoxy, C_1 - C_6 haloalkoxy, C_3 - C_6 alkenyloxy, C_3 - C_6 alkynyloxy, C_3 - C_6 cycloalkoxy, C_3 - C_6 halocycloalkoxy, 40 C_1 - C_6 alkylthio, C_1 - C_6 haloalkylthio, C_1 - C_6 alkylsulfinyl, C_1 - C_6 haloalkylsulfinyl, C_1 - C_6 alkylsulfonyl and C_1 - C_6 haloalkylsulfonyl;

 R^{5kk} is a benzyl group, wherein the methylene portion is substituted one group independently selected from the group 45 consisting of methyl, ethyl, CHF₂, CF₃ and methoxy;

and wherein the phenyl ring is optionally substituted by one or more groups independently selected from the group consisting of hydrogen, halogen, CN, NO₂, OH, SH, CHO, $C(=O)NH_2$, $C(=O)NH(CH_3)$, $C(=O)N(CH_3)_2$, C(=S) NH_2 , $C(=S)NH(CH_3)$, $C(=S)N(CH_3)_2$, SO_2NH_2 , SO_2NH (CH_3) , $SO_2N(CH_3)_2$, C_1 - C_6 alkyl, C_1 - C_6 haloalkyl, C_3 - C_6 cycloalkyl, C_2 - C_6 alkenyl, C_2 - C_6 haloalkenyl, C_2 - C_6 alkynyl, C₂-C₆ haloalkynyl, C₁-C₆ alkoxy, C₁-C₆ haloalkoxy, C₃-C₆ alkenyloxy, C₃-C₆ haloalkenyloxy, C₃-C₆ alkynyloxy, C₃-C₆ 55 eyeloalkoxy, C_3 - C_6 halocycloalkoxy, C_1 - C_6 alkylthio, C_1 - C_6 haloalkylthio, C_1 - C_6 alkylsulfinyl, C_1 - C_6 haloalkylsulfinyl, C_1 - C_6 alkylsulfonyl and C_1 - C_6 haloalkylsulfonyl; R^{5ll} is a benzyl group, wherein the methylene portion is

substituted by one group independently selected from the 60 group consisting of methyl, ethyl, CHF₂, CF₃ and methoxy; and wherein the phenyl ring is optionally substituted by one or more groups independently selected from the group consisting of hydrogen, halogen, CN, NO₂, OH, SH, CHO, $C(=O)NH_2$, $C(=O)NH(CH_3)$, $C(=O)N(CH_3)_2$, C(=S) NH_2 , $C(=S)NH(CH_3)$, $C(=S)N(CH_3)_2$, SO_2NH_2 , SO_2NH (CH_3) , $SO_2N(CH_3)_2$, C_1 - C_6 alkyl, C_1 - C_6 haloalkyl, C_3 - C_6

cycloalkyl, C_2 - C_6 alkenyl, C_2 - C_6 haloalkenyl, C_2 - C_6 alkynyl, C₁-C₆ alkoxy, C₁-C₆ haloalkoxy, C₃-C₆ alkenyloxy, C₃-C₆ alkynyloxy, C₃-C₆ cycloalkoxy, C₃-C₆ halocycloalkoxy, C_1 - C_6 alkylthio, C_1 - C_6 haloalkylthio, C_1 - C_6 alkylsulfinyl, C₁-C₆ haloalkylsulfinyl, C₁-C₆ alkylsulfonyl and C₁-C₆ haloalkylsulfonyl;

56

 R^{5mm} is a benzyl group, wherein the methylene portion is substituted by at least one group independently selected from the group consisting of hydrogen, C₁-C₄ alkyl, C₁-C₄ haloalkyl, CN, C₁-C₄ alkoxy and C₁-C₄ haloalkoxy;

and wherein the phenyl ring is optionally substituted by one or more groups independently selected from the group consisting of hydrogen, halogen, CN, OH, SH, CHO C₁-C₆ alkyl, C_1 - C_6 haloalkyl, C_3 - C_6 cycloalkyl, C_2 - C_6 alkenyl, C_2 - C_6 haloalkenyl, C_2 - C_6 alkynyl, C_1 - C_6 alkoxy, C_1 - C_6 haloalkoxy, C_3 - C_6 alkenyloxy, C_3 - C_6 alkynyloxy, C_3 - C_6 cycloalkoxy, C₁-C₆ alkylthio, C₁-C₆ alkylsulfinyl and C₁-C₆ alkylsulfonyl;

 R^{5m} is a benzyl group, wherein the methylene portion is consisting of C₁-C₄ alkyl, C₁-C₄ haloalkyl and C₁-C₄ alkoxy; and wherein the phenyl ring is optionally substituted by one or more groups independently selected from the group consisting of hydrogen, halogen, CN, OH, SH, CHO C_r C_6 alkyl, C_1 - C_6 haloalkyl, C_3 - C_6 cycloalkyl, C_2 - C_6 alkenyl, C_2 - C_6 haloalkenyl, C_2 - C_6 alkynyl, C_1 - C_6 alkoxy, C_1 - C_6 haloalkoxy, C₃-C₆ alkenyloxy, C₃-C₆ alkynyloxy, C₃-C₆ cycloalkoxy, C_1 - C_6 alkylthio, C_1 - C_6 alkylsulfinyl and C_1 - C_6 alkylsulfonyl;

R^{oo} is a benzyl group, wherein the methylene portion is substituted one group independently selected from the group consisting of methyl, ethyl, CHF₂, CF₃ and methoxy;

and wherein the phenyl ring is optionally substituted by one or more groups independently selected from the group consisting of hydrogen, halogen, CN, OH, SH, CHO C, C6 alkyl, C1-C6 haloalkyl, C3-C6 cycloalkyl, C2-C6 alkenyl, C_2 - C_6 haloalkenyl, C_2 - C_6 alkynyl, C_1 - C_6 alkoxy, C_1 - C_6 haloalkoxy, C_3 - C_6 alkenyloxy, C_3 - C_6 alkynyloxy, C_3 - C_6 cycloalkoxy, $\mathrm{C_1\text{-}C_6}$ alkylthio, $\mathrm{C_1\text{-}C_6}$ alkylsulfinyl and $\mathrm{C_1\text{-}C_6}$ alkylsulfonyl;

 R^{5pp} is a benzyl group, wherein the methylene portion is substituted by at least one group independently selected from the group consisting of hydrogen, C₁-C₄ alkyl, C₁-C₄ haloalkyl, CN, C₁-C₄ alkoxy and C₁-C₄ haloalkoxy;

and wherein the phenyl ring is optionally substituted by one or more groups independently selected from the group consisting of hydrogen, halogen, CN, OH, SH, CHO, methyl. ethyl, n-propyl, iso-propyl, CH₂F, CHF₂, CF₃, CHF—CH₃, CF₂—CH₃, CF₂—CF₃, cyclopropyl, CH=CH₂, C(CH₃) =CH₂, CH=CH(CH₃), C(CH₃)=CH(CH₃), CH= $C(CH_3)_2$, $C(CH_3)=C(CH_3)_2$, $CH=CF_2$, $CH=CCl_2$, C=CH, methoxy, ethoxy, iso-propyloxy, OCHF₂, OCH₂-C = CH, $OCH(CH_3) - C = CH$, SCH_3 , SCH_2CH_3 , S(=O)

 R^{5qq} is a benzyl group, wherein the methylene portion is substituted one group independently selected from the group consisting of C_1 - C_4 alkyl, C_1 - C_4 haloalkyl and C_1 - C_4 alkoxy; and wherein the phenyl ring is optionally substituted by one or more groups independently selected from the group consisting of hydrogen, halogen, CN, OH, SH, CHO, methyl, ethyl, n-propyl, iso-propyl, CH₂F, CHF₂, CF₃, CHF—CH₃, $C(CH_3)_2$, $C(CH_3)=C(CH_3)_2$, $CH=CF_2$, $CH=CCl_2$, C≡CH, methoxy, ethoxy, iso-propyloxy, OCHF₂, OCH₂-C = CH, $OCH(CH_3) - C = CH$, SCH_3 , SCH_2CH_3 , S(=O) CH_3 , $S(=O)CH_2CH_3$, $S(=O)_2CH_3$ and $S(=O)_2CH_2CH_3$;

R⁵rr is a benzyl group, wherein the methylene portion is substituted one group independently selected from the group consisting of methyl, ethyl, CHF₂, CF₃ and methoxy;

and wherein the phenyl ring is optionally substituted by one or more groups independently selected from the group 5 consisting of hydrogen, halogen, CN, OH, SH, CHO, methyl, ethyl, n-propyl, iso-propyl, CH₂F, CHF₂, CF₃, CHF—CH₃, CF₂—CH₃, CF₂—CF₃, cyclopropyl, CH—CH₂, C(CH₃) —CH₂, CH—CH(CH₃), C(CH₃)—CH(CH₃), CH—CC₁, CH—CC₂, CH—CC₁, 10 C—CH, methoxy, ethoxy, iso-propyloxy, OCHF₂, OCH₂—C—CH, OCH(CH₃)—C—CH, SCH₃, SCH₂CH₃, S(—O) CH₃, S(—O)CH₂CH₃, S(—O)₂CH₃ and S(—O)₂CH₂CH₃;

 R^{5ss} is G^9 wherein R^{15} and R^{16} are selected independently of each other, from the group consisting of hydrogen, halogen, cyano, C_1 - C_4 alkyl, C_1 - C_4 haloalkyl and C_3 - C_6 cycloalkyl:

each R^{17} , R^{18} , R^{19} , R^{20} , R^{20} , R^{21} and R^{22} are selected independently of each other, from the group consisting of hydrogen, halogen, cyano, C_1 - C_4 alkyl, C_1 - C_4 haloalkyl, C_1 - C_4 20 alkoxy, C_1 - C_4 haloalkoxy and C_3 - C_6 cycloalkyl;

 $R^{23^{\circ}}, R^{24^{\circ}}$ and $R^{25^{\circ}}$ are selected independently of each other, from the group consisting of hydrogen, halogen, cyano, $C_1\text{-}C_4$ alkyl, $C_1\text{-}C_4$ haloalkyl, $C_1\text{-}C_4$ alkoxy, $C_3\text{-}C_6$ cycloalkyl, $C_3\text{-}C_6$ halocycloalkyl and $C_1\text{-}C_4$ alkylthio; $R^{5\pi}$ is G^9 wherein each $R^{15^{\circ}}, R^{16^{\circ}}, R^{17^{\circ}}, R^{18^{\circ}}, R^{19^{\circ}}, R^{20^{\circ}}, R^{21^{\circ}}$

R^{5tt} is G⁹ wherein each R¹⁵, R¹⁶, R¹⁷, R¹⁸, R¹⁹, R²⁰, R²¹ and R²² are selected independently of each other, from the group consisting of hydrogen, halogen, methyl, ethyl, isopropyl, monofluoromethyl, polyfluoromethyl, monofluoroethyl, and polyfluoroethyl;

 $R^{23'}$, $R^{24'}$ and $R^{25'}$ are selected independently of each other, from the group consisting of hydrogen, halogen, cyano, C_1 - C_4 alkyl, C_1 - C_4 haloalkyl, C_1 - C_4 alkoxy, C_3 - C_6 cycloalkyl, C_3 - C_6 halocycloalkyl and C_1 - C_4 alkylthio;

n is either 0 or 1;

R^{5vv} is G⁹ wherein each R^{15'}, R^{16'}, R^{17'}, R^{18'}, R^{19'}, R^{20'}, R^{21'} and R^{22'} are selected independently of each other, from the group consisting of hydrogen, fluorine, methyl, ethyl, isopropyl, CH₂F, CHF₂, CF₃, CHF—CH₃, CF₂—CH₃, CH₂—CH₃F CH₂—CHF₂ and CH₂—CF₃;

CH $_2$ F CH $_2$ —CHF $_2$ and CH $_2$ —CF $_3$; R $^{23'}$, R $^{24'}$ and R $^{25'}$ are selected independently of each other, from the group consisting of hydrogen, halogen, cyano, C $_1$ -C $_4$ alkyl, C $_1$ -C $_4$ haloalkyl, C $_1$ -C $_4$ alkoxy, C $_3$ -C $_6$ cycloalkyl, C $_3$ -C $_6$ halocycloalkyl and C $_1$ -C $_4$ alkylthio;

n is either 0 or 1;

 $R^{5\nu\nu}$ is G^9 wherein $R^{15'}$, $R^{16'}$, $R^{17'}$, $R^{18'}$, $R^{19'}$, $R^{20'}$, $R^{21'}$ and $R^{22'}$ are each hydrogen;

 $R^{23'}, R^{24'}$ and $R^{25'}$ are selected independently of each other, from the group consisting of hydrogen, halogen, cyano, $C_1\text{-}C_4$ alkyl, $C_1\text{-}C_4$ haloalkyl, $C_1\text{-}C_4$ alkoxy, $C_3\text{-}C_6$ 50 cycloalkyl, $C_3\text{-}C_6$ halocycloalkyl and $C_1\text{-}C_4$ alkylthio;

n is either 0 or 1;

 R^{5ww} is G^9 wherein R^{15} and R^{16} are selected independently of each other, from the group consisting of methyl, F and CF_2 :

each $R^{17'}$, $R^{18'}$, $R^{19'}$, $R^{20'}$, $R^{21'}$ and $R^{22'}$ are selected independently of each other, from the group consisting of hydrogen, halogen, cyano, C_1 - C_4 alkyl, C_1 - C_4 haloalkyl, C_1 - C_4 alkoxy, C_1 - C_4 haloalkoxy and C_3 - C_6 cycloalkyl;

 $R^{23'}, R^{24'}$ and $R^{25'}$ are selected independently of each other, $\ 60$ from the group consisting of hydrogen, halogen, cyano, $C_1\text{-}C_4$ alkyl, $C_1\text{-}C_4$ haloalkyl, $C_1\text{-}C_4$ alkoxy, $C_3\text{-}C_6$ cycloalkyl, $C_3\text{-}C_6$ halocycloalkyl and $C_1\text{-}C_4$ alkylthio; n is either 0 or 1;

 R^{5xx} is G^9 wherein $R^{15'}$ is selected from the group consisting of hydrogen, halogen, cyano, C_1 - C_4 alkyl, C_1 - C_4 haloalkyl and C_3 - C_6 cycloalkyl;

each $R^{16'}, R^{17'}, R^{18'}, R^{19'}, R^{20'}, R^{21'}$ and $R^{22'}$ are hydrogen; $R^{23'}, R^{24'}$ and $R^{25'}$ are selected independently of each other, from the group consisting of hydrogen, halogen, cyano, $C_1\text{-}C_4$ alkyl, $C_1\text{-}C_4$ haloalkyl, $C_1\text{-}C_4$ alkoxy, $C_3\text{-}C_6$ cycloalkyl, $C_3\text{-}C_6$ halocycloalkyl and $C_1\text{-}C_4$ alkylthio;

n is either 0 or 1:

 R^{5zz} is G^9 wherein $R^{15'}$ and $R^{16'}$ are selected independently of each other, from the group consisting of hydrogen, halogen, cyano, C_1 - C_4 alkyl, C_1 - C_4 haloalkyl and C_3 - C_6 cycloalkyl;

each R^{17} , R^{18} , R^{19} , R^{20} , R^{21} and R^{22} are selected independently of each other, from the group consisting of hydrogen, halogen, cyano, C_1 - C_4 alkyl, C_1 - C_4 haloalkyl, C_1 - C_4 alkoxy, C_1 - C_4 haloalkoxy and C_3 - C_6 cycloalkyl;

R^{23'}, R^{24'} and R^{25'} are selected independently of each other, from the group consisting of hydrogen, cyano, halogen, methyl, ethyl, isopropyl, fluoromethyl and fluoroethyl;

R^{5ba} is G⁹ wherein each R^{15'}, R^{16'}, R^{17'}, R^{18'}, R^{19'}, R^{20'}, R^{21'} and R^{22'} are selected independently of each other, from the group consisting of hydrogen, halogen, methyl, ethyl, isopropyl, monofluoromethyl, polyfluoromethyl, monofluoroethyl, and polyfluoroethyl;

R^{23'}, R^{24'} and R^{25'} are selected independently of each other,
 from the group consisting of hydrogen, cyano, halogen, methyl, ethyl, isopropyl, monofluoromethyl, polyfluoromethyl, monofluoroethyl, and polyfluoroethyl;

n is either 0 or 1;

 R^{5bc} is G^9 wherein each $R^{15'}, R^{16'}, R^{17'}, R^{18'}, R^{19'}, R^{20'}, R^{21'}$ and $R^{22'}$ are selected independently of each other, from the group consisting of hydrogen, fluorine, methyl, ethyl, isopropyl, $CH_2F,\ CHF_2,\ CF_3,\ CHF_CH_3,\ CF_2_CH_3,\ CH_2_CH_2_CHF_2$ and $CH_2_CF_3;$ $R^{23'}, R^{24'}$ and $R^{25'}$ are selected independently of each other,

R²³′, R²⁴′ and R²⁵′ are selected independently of each other, from the group consisting of hydrogen, cyano, halogen, methyl, ethyl, isopropyl, monofluoromethyl, polyfluoromethyl, monofluoroethyl, and polyfluoroethyl;

n is either 0 or 1:

 R^{5bd} is G^9 wherein $R^{15'}$, $R^{16'}$, $R^{17'}$, $R^{18'}$, $R^{19'}$, $R^{20'}$, $R^{21'}$ and $R^{22'}$ are each hydrogen;

R^{22'} to R^{24'} are selected independently of each other, from the group consisting of hydrogen, cyano, halogen, methyl, ethyl, isopropyl, monofluoromethyl, polyfluoromethyl, monofluoroethyl, and polyfluoroethyl;

n is either 0 or 1;

 R^{5be} is G^9 wherein R^{15° and R^{16° are selected independently of each other, from the group consisting of methyl, F and CF_3 ; each R^{17° , R^{18° , R^{19° , R^{20° , R^{21° and R^{22° are selected independently of each other, from the group consisting of hydrogen, halogen, cyano, $C_1\text{-}C_4$ alkyl, $C_1\text{-}C_4$ haloalkyl, $C_1\text{-}C_4$ alkoxy, $C_1\text{-}C_4$ haloalkoxy and $C_3\text{-}C_6$ cycloalkyl;

R²³′, R²⁴′ and R²⁵′ are selected independently of each other, from the group consisting of hydrogen, cyano, halogen, methyl, ethyl, isopropyl, monofluoromethyl, polyfluoromethyl, monofluoroethyl, and polyfluoroethyl;

n is either 0 or 1;

 $R^{5\mathit{bf}}$ is G^9 wherein $R^{15'}$ is selected from the group consisting of hydrogen, halogen, cyano, $C_1\text{-}C_4$ alkyl, $C_1\text{-}C_4$ haloalkyl and $C_3\text{-}C_6$ cycloalkyl; each $R^{16'}, R^{17'}, R^{18'}, R^{19'}, R^{20'}, R^{21'}$ and $R^{22'}$ is hydrogen;

each R¹⁰, R¹⁰, R¹⁰, R¹⁰, R²¹ and R²² is hydrogen; R²³, R²⁴ and R²⁵ are selected independently of each other, from the group consisting of hydrogen, cyano, halogen, methyl, ethyl, isopropyl, monofluoromethyl, polyfluoromethyl, monofluoroethyl, and polyfluoroethyl;

n is either 0 or 1;

R^{5bg} is G⁹ wherein R^{15'} and R^{16'} are selected independently of each other, from the group consisting of hydrogen, halogen, cyano, C₁-C₄ alkyl, C₁-C₄ haloalkyl and C₃-C₆ cycloalkyl;

each R¹⁷, R¹⁸, R¹⁹, R²⁰, R²¹ and R²² are selected inde- 5 pendently of each other, from the group consisting of hydrogen, halogen, cyano, C₁-C₄ alkyl, C₁-C₄ haloalkyl, C₁-C₄

alkoxy, C_1 - C_4 haloalkoxy and C_3 - C_6 cycloalkyl; $R^{23'}$, $R^{24'}$ and $R^{25'}$ are selected independently of each other, from the group consisting of hydrogen, F, Cl, Br, methyl, ethyl, isopropyl, CH₂F, CHF₂, CF₃, CHF—CH₃, CF₂—CH₃, CH₂—CH₂F CH₂—CHF₂ and CH₂—CF₃;

 R^{5bh} is G^9 wherein each $R^{15'}$, $R^{16'}$, $R^{17'}$, $R^{18'}$, $R^{19'}$, $R^{20'}$, $R^{21'}$ and R^{22'} are selected independently of each other, from the group consisting of hydrogen, halogen, methyl, ethyl, isopro- 15 pyl, monofluoromethyl, polyfluoromethyl, monofluoroethyl, and polyfluoroethyl;

R²³, R²⁴ and R²⁵ are selected independently of each other, from the group consisting of hydrogen, F, Cl, Br, methyl, ethyl, isopropyl, CH₂F, CHF₂, CF₃, CHF—CH₃, CF₂—CH₃, 20 CH₂—CH₂F CH₂—CHF₂ and CH₂—CF₃;

n is either 0 or 1;

R^{5bi} is G⁹ wherein each R^{15'}, R^{16'}, R^{17'}, R^{18'}, R^{19'}, R^{20'}, R^{21'} and R²² are selected independently of each other, from the group consisting of hydrogen, fluorine, methyl, ethyl, isopro- 25 pyl, CH₂F, CHF₂, CF₃, CHF—CH₃, CF₂—CH₃, CH₂— CH₂F CH₂—CHF₂ and CH₂—CF₃; $R^{23'}$, $R^{24'}$ and $R^{25'}$ are selected independently of each other,

from the group consisting of hydrogen, F, Cl, Br, methyl, ethyl, isopropyl, CH₂F, CHF₂, CF₃, CHF—CH₃, CF₂—CH₃, 30 CH_2 — CH_2F CH_2 — CHF_2 and CH_2 — CF_3 ;

n is either 0 or 1;

 R^{5bj} is G^9 wherein $R^{15'}$, $R^{16'}$, $R^{17'}$, $R^{18'}$, $R^{19'}$, $R^{20'}$, $R^{21'}$ and R^{22'} are each hydrogen;

R²³', R²⁴' and R²⁵' are selected independently of each other, 35 from the group consisting of hydrogen, F, Cl, Br, methyl, ethyl, isopropyl, CH₂F, CHF₂, CF₃, CHF—CH₃, CF₂—CH₃, CH₂—CH₂F CH₂—CHF₂ and CH₂—CF₃;

n is either 0 or 1;

 R^{5bk} is G^9 wherein R^{15} and R^{16} are selected independently 40 of each other, from the group consisting of methyl, \hat{F} and CF_3 ; each $R^{17'}$, $R^{18'}$, $R^{19'}$, $R^{20'}$, $R^{21'}$ and $R^{22'}$ are selected independently of each other, from the group consisting of hydrogen, halogen, cyano, C1-C4 alkyl, C1-C4 haloalkyl, C1-C4 alkoxy, C_1 - C_4 haloalkoxy and C_3 - C_6 cycloalkyl; $R^{23'}$, $R^{24'}$ and $R^{25'}$ are selected independently of each other,

from the group consisting of hydrogen, F, Cl, Br, methyl, ethyl, isopropyl, CH₂F, CHF₂, CF₃, CHF—CH₃, CF₂—CH₃, CH_2 — CH_2F CH_2 — CHF_2 and CH_2 — CF_3 ;

n is either 0 or 1;

R^{5bl} is G⁹ wherein R^{15'} is selected from the group consisting of hydrogen, halogen, cyano, C₁-C₄ alkyl, C₁-C₄ haloalkyl and C_3 - C_6 cycloalkyl; each $R^{16'}$, $R^{17'}$, $R^{18'}$, $R^{19'}$, $R^{20'}$, $R^{21'}$ and $R^{22'}$ is hydrogen;

 $R^{22'}$ to $R^{24'}$ are selected independently of each other, from 55 the group consisting of hydrogen, F, Cl, Br, methyl, ethyl, isopropyl, CH₂F, CHF₂, CF₃, CHF—CH₃, CF₂—CH₃, CH₂—CH₂F CH₂—CHF₂ and CH₂—CF₃;

n is either 0 or 1;

 R^{5bm} is G^9 wherein $R^{15'}$ and $R^{16'}$ are selected independently of each other, from the group consisting of hydrogen, halogen, cyano, C₁-C₄ alkyl, C₁-C₄ haloalkyl and C₃-C₆ cycloalkyl;

each R¹⁷, R¹⁸, R¹⁹, R²⁰, R²¹ and R²² are selected independently of each other, from the group consisting of hydrogen, halogen, cyano, C₁-C₄ alkyl, C₁-C₄ haloalkyl, C₁-C₄ alkoxy, C₁-C₄ haloalkoxy and C₃-C₆ cycloalkyl;

R^{23'}, R^{24'} and R^{25'} are selected independently of each other, from the group consisting of hydrogen, halogen, cyano, C_1 - C_4 alkyl, C_1 - C_4 haloalkyl, C_1 - C_4 alkoxy, C_3 - C_6 cycloalkyl, C₃-C₆ halocycloalkyl and C₁-C₄ alkylthio; n is 0:

 R^{5bn} is G^9 wherein each $R^{15'}$, $R^{16'}$, $R^{17'}$, $R^{18'}$, $R^{19'}$, $R^{20'}$, $R^{21'}$ and R22' are selected independently of each other, from the group consisting of hydrogen, halogen, methyl, ethyl, isopropyl, monofluoromethyl, polyfluoromethyl, monofluoroethyl, and polyfluoroethyl;

 $R^{23'}$, $R^{24'}$ and $R^{25'}$ are selected independently of each other, from the group consisting of hydrogen, halogen, cyano, C₁-C₄ alkyl, C₁-C₄ haloalkyl, C₁-C₄ alkoxy, C₃-C₆ cycloalkyl, C₃-C₆ halocycloalkyl and C₁-C₄ alkylthio;

 $R^{\mathit{5bo}} \text{ is } G^{9} \text{ wherein each } R^{15'}, R^{16'}, R^{17'}, R^{18'}, R^{19'}, R^{20'}, R^{21'}$ and R²² are selected independently of each other, from the group consisting of hydrogen, fluorine, methyl, ethyl, isopropyl, CH₂F, CHF₂, CF₃, CHF—CH₃, CF₂—CH₃, CH₂— CH₂F CH₂—CHF₂ and CH₂—CF₃;

 $R^{23'}$, $R^{24'}$ and $R^{25'}$ are selected independently of each other, from the group consisting of hydrogen, halogen, cyano, C₁-C₄ alkyl, C₁-C₄ haloalkyl, C₁-C₄ alkoxy, C₃-C₆ cycloalkyl, C₃-C₆ halocycloalkyl and C₁-C₄ alkylthio;

n is 0;

R^{5bp} P is G⁹ wherein R^{15'}, R^{16'}, R^{17'}, R^{18'}, R^{19'}, R^{20'}, R^{21'} and R22' are each hydrogen;

 $R^{23'}, R^{24'}$ and $R^{25'}$ are selected independently of each other, from the group consisting of hydrogen, halogen, cyano, C_1 - C_4 alkyl, C_1 - C_4 haloalkyl, C_1 - C_4 alkoxy, C_3 - C_6 cycloalkyl, C₃-C₆ halocycloalkyl and C₁-C₄ alkylthio;

 R^{5bq} is G^9 wherein $R^{15'}$ and $R^{16'}$ are selected independently of each other, from the group consisting of methyl, F and CF₃; each R¹⁷′, R¹⁸′, R¹⁹′, R²⁰′, R²¹′ and R²²′ are selected independently of each other, from the group consisting of hydrogen, halogen, cyano, C₁-C₄ alkyl, C₁-C₄ haloalkyl, C₁-C₄ alkoxy, C₁-C₄ haloalkoxy and C₃-C₆cycloalkyl;

R^{23'}, R^{24'} and R^{25'} are selected independently of each other, from the group consisting of hydrogen, halogen, cyano, C_1 - C_4 alkyl, C_1 - C_4 haloalkyl, C_1 - C_4 alkoxy, C_3 - C_6 cycloalkyl, C₃-C₆ halocycloalkyl and C₁-C₄ alkylthio;

n is 0; R^{5br} is G^9 wherein $R^{15'}$ is selected from the group consist-45 ing of hydrogen, halogen, cyano, C₁-C₄ alkyl, C₁-C₄

haloalkyl and C₃-C₆ cycloalkyl; each R¹⁶', R¹⁷', R¹⁸', R¹⁹', R²⁰', R²¹' and R²²' is selected independently of each other, from the group consisting of

R²³, R²⁴ and R²⁵ are selected independently of each other, from the group consisting of hydrogen, halogen, cyano, $C_1\text{-}C_4$ alkyl, $C_1\text{-}C_4$ haloalkyl, $C_1\text{-}C_4$ alkoxy, $C_3\text{-}C_6$ cycloalkyl, $C_3\text{-}C_6$ halocycloalkyl and $C_1\text{-}C_4$ alkylthio;

R^{5bs} is G⁹ wherein R^{15'} and R^{16'} are selected independently of each other, from the group consisting of hydrogen, halogen, cyano, C₁-C₄ alkyl, C₁-C₄ haloalkyl and C₃-C₆ cycloalkyl;

each R¹⁷, R¹⁸, R¹⁹, R²⁰, R²¹ and R²² are selected independently of each other, from the group consisting of hydrogen, halogen, cyano, C₁-C₄ alkyl, C₁-C₄ haloalkyl, C₁-C₄

alkoxy, C_1 - C_4 haloalkoxy and C_3 - C_6 cycloalkyl; $R^{23'}$, $R^{24'}$ and $R^{25'}$ are selected independently of each other, from the group consisting of hydrogen, cyano, halogen, methyl, ethyl, isopropyl, monofluoromethyl, polyfluoromethyl, monofluoroethyl, and polyfluoroethyl;

 R^{5bt} is G^9 wherein each $R^{15'}$, $R^{16'}$, $R^{17'}$, $R^{18'}$, $R^{19'}$, $R^{20'}$, $R^{21'}$ and R²² are selected independently of each other, from the group consisting of hydrogen, halogen, methyl, ethyl, isopropyl, monofluoromethyl, polyfluoromethyl, monofluoroethyl, and polyfluoroethyl;

R²³', R²⁴' and R²⁵' are selected independently of each other, from the group consisting of hydrogen, cyano, halogen, methyl, ethyl, isopropyl, monofluoromethyl, polyfluoromethyl, monofluoroethyl, and polyfluoroethyl;

n is 0;

 R^{5bu} is G^9 wherein each $R^{15'}$, $R^{16'}$, $R^{17'}$, $R^{18'}$, $R^{19'}$, $R^{20'}$, $R^{21'}$ and R^{22'} are selected independently of each other, from the group consisting of hydrogen, fluorine, methyl, ethyl, isopropyl, CH₂F, CHF₂, CF₃, CHF—CH₃, CF₂—CH₃, CH₂-CH₂F CH₂—CHF₂ and CH₂—CF₃; R^{23'}, R^{24'} and R^{25'} are selected independently of each other,

from the group consisting of hydrogen, cyano, halogen, methyl, ethyl, isopropyl, monofluoromethyl, polyfluoromethyl, monofluoroethyl, and polyfluoroethyl;

n is 0:

 R^{5bv} is G^9 wherein $R^{15'}$, $R^{16'}$, $R^{17'}$, $R^{18'}$, $R^{19'}$, $R^{20'}$, $R^{21'}$ and R²² are each hydrogen;

R²³, R²⁴ and R²⁵ are selected independently of each other, from the group consisting of hydrogen, cyano, halogen, methyl, ethyl, isopropyl, monofluoromethyl, polyfluorom- 25 ethyl, monofluoroethyl, and polyfluoroethyl;

n is 0;

R^{5bw} is G⁹ wherein R^{15'} and R^{16'} are selected independently of each other, from the group consisting of methyl, F and CF₃; each R¹⁷', R¹⁸', R¹⁹', R²⁰', R²¹' and R²²' are selected inde- 30 pendently of each other, from the group consisting of hydrogen, halogen, cyano, C₁-C₄ alkyl, C₁-C₄ haloalkyl, C₁-C₄

alkoxy, C_1 - C_4 haloalkoxy and C_3 - C_6 cycloalkyl; R^{23} ', R^{24} ' and R^{25} ' are selected independently of each other, from the group consisting of hydrogen, cyano, halogen, 35 methyl, ethyl, isopropyl, monofluoromethyl, polyfluoromethyl, monofluoroethyl, and polyfluoroethyl;

R^{5bx} is G⁹ wherein R^{15'} is selected from the group consisting of hydrogen, halogen, cyano, C₁-C₄ alkyl, C₁-C₄ 40

haloalkyl and C_3 - C_6 cycloalkyl; each $R^{16'}$, $R^{17'}$, $R^{18'}$, $R^{19'}$, $R^{20'}$, $R^{21'}$ and $R^{22'}$ is hydrogen; $R^{23'}$, $R^{24'}$ and $R^{25'}$ are selected independently of each other, from the group consisting of hydrogen, cyano, halogen, methyl, ethyl, isopropyl, monofluoromethyl, polyfluorom- 45 ethyl, monofluoroethyl, and polyfluoroethyl;

R^{5by} is G⁹ wherein R^{15'} and R^{16'} are selected independently of each other, from the group consisting of hydrogen, halogen, cyano, C₁-C₄ alkyl, C₁-C₄ haloalkyl and C₃-C₆ 50

each R¹⁷, R¹⁸, R¹⁹, R²⁰, R²¹ and R²² are selected independently of each other, from the group consisting of hydrogen, halogen, cyano, C₁-C₄ alkyl, C₁-C₄ haloalkyl, C₁-C₄ alkoxy, C₁-C₄ haloalkoxy and C₃-C₆ cycloalkyl;

 $R^{23'}$, $R^{24'}$ and $R^{25'}$ are selected independently of each other, from the group consisting of hydrogen, F, Cl, Br, methyl, ethyl, isopropyl, CH₂F, CHF₂, CF₃, CHF—CH₃, CF₂—CH₃, CH₂—CH₂F CH₂—CHF₂ and CH₂—CF₃;

n is 0:

 R^{5bz} is G^9 wherein each $R^{15'}$, $R^{16'}$, $R^{17'}$, $R^{18'}$, $R^{19'}$, $R^{20'}$, $R^{21'}$ and R^{22'} are selected independently of each other, from the group consisting of hydrogen, halogen, methyl, ethyl, isopropyl, monofluoromethyl, polyfluoromethyl, monofluoroethyl, and polyfluoroethyl;

R²³, R²⁴ and R²⁵ are selected independently of each other, from the group consisting of hydrogen, F, Cl, Br, methyl,

ethyl, isopropyl, CH₂F, CHF₂, CF₃, CHF—CH₃, CF₂—CH₃, CH₂—CH₂F CH₂—CHF, and CH₂—CF₃;

 $R^{5\it{ca}}\,is\,G^{9}\,wherein\,each\,R^{15'},R^{16'},R^{17'},R^{18'},R^{19'},R^{20'},R^{21'}$ 5 and R²² are selected independently of each other, from the group consisting of hydrogen, fluorine, methyl, ethyl, isopropyl, CH_2F , CHF_2 , CF_3 , CHF— CH_3 , CF_2 — CH_3 , CH_2 — CH_2F CH_2 — CHF_2 and CH_2 — CF_3 ; $R^{23'}$, $R^{24'}$ and $R^{25'}$ are selected independently of each other,

from the group consisting of hydrogen, F, Cl, Br, methyl, ethyl, isopropyl, CH₂F, CHF₂, CF₃, CHF—CH₃, CF₂—CH₃, CH₂—CH₂F CH₂—CHF₂ and CH₂—CF₃;

20

 $R^{5\mathit{cb}}$ is G^9 wherein $R^{15'}, R^{16'}, R^{17'}, R^{18'}, R^{19'}, R^{20'}, R^{21'}$ and 15 R²² and R²² are each hydrogen;

R^{23'}, R^{24'} and R^{25'} are selected independently of each other, from the group consisting of hydrogen, F, Cl, Br, methyl, ethyl, isopropyl, CH₂F, CHF₂, CF₃, CHF—CH₃, CF₂—CH₃, CH₂—CH₂F CH₂—CHF₂ and CH₂—CF₃; n is 0;

R^{5cd} is G⁹ wherein R^{23'}, R^{24'} and R^{25'} are selected independently of each other, from the group consisting of methyl, F

each R¹⁷, R¹⁸, R¹⁹, R²⁰, R²¹ and R²² are selected independently of each other, from the group consisting of hydrogen, halogen, cyano, C₁-C₄ alkyl, C₁-C₄ haloalkyl, C₁-C₄ alkoxy, C₁-C₄ haloalkoxy and C₃-C₆ cycloalkyl;

 $R^{23'}$, $R^{24'}$ and $R^{25'}$ are selected independently of each other, from the group consisting of hydrogen, F, Cl, Br, methyl, ethyl, isopropyl, CH₂F, CHF₂, CF₃, CHF—CH₃, CF₂—CH₃, CH_2 — CH_2F CH_2 — CHF_2 and CH_2 — CF_3 ;

R^{5ce} is G⁹ wherein R^{15'} is selected from the group consisting of hydrogen, halogen, cyano, C₁-C₄ alkyl, C₁-C₄ haloalkyl and C_3 - C_6 cycloalkyl; each $R^{16'}, R^{17'}, R^{18'}, R^{19'}, R^{20'}, R^{21'}$ and $R^{22'}$ is hydrogen;

R^{23'}, R^{24'} and R^{25'} are selected independently of each other, from the group consisting of hydrogen, F, Cl, Br, methyl, ethyl, isopropyl, CH₂F, CHF₂, CF₃, CHF—CH₃, CF₂—CH₃, CH₂—CH₂F CH₂—CHF₂ and CH₂—CF₃;

n is 0:

R^{5cf} is G⁹ wherein R^{15'} and R^{16'} are selected independently of each other, from the group consisting of hydrogen, halogen, cyano, C₁-C₄ alkyl, C₁-C₄ haloalkyl and C₃-C₆ cycloalkyl;

each R¹⁷, R¹⁸, R¹⁹, R²⁰, R²¹ and R²² are selected independently of each other, from the group consisting of hydrogen, halogen, cyano, C₁-C₄ alkyl, C₁-C₄ haloalkyl, C₁-C₄

alkoxy, C_1 - C_4 haloalkoxy and C_3 - C_6 cycloalkyl; $R^{23'}$, $R^{24'}$ and $R^{25'}$ are selected independently of each other, from the group consisting of hydrogen, halogen, cyano, $C_1\text{-}C_4 \quad \text{alkyl}, \quad C_1\text{-}C_4 \quad \text{haloalkyl}, \quad C_1\text{-}C_4 \quad \text{alkoxy}, \quad C_3\text{-}C_6$ cycloalkyl, C₃-C₆ halocycloalkyl and C₁-C₄ alkylthio;

n is 1:

 R^{5cg} is G^9 wherein each $R^{15'}$, $R^{16'}$, $R^{17'}$, $R^{18'}$, $R^{19'}$, $R^{20'}$. $R^{21'}$ and R²² are selected independently of each other, from the group consisting of hydrogen, halogen, methyl, ethyl, isopropyl, monofluoromethyl, polyfluoromethyl, monofluoroethyl, and polyfluoroethyl;

 $^{3'}$, $R^{24'}$ and $R^{25'}$ are selected independently of each other, from the group consisting of hydrogen, halogen, cyano, C₁-C₄ alkyl, C₁-C₄ haloalkyl, C₁-C₄ alkoxy, C₃-C₆ cycloalkyl, C₃-C₆ halocycloalkyl and C₁-C₄ alkylthio;

n is 1;

R^{5ch} is G⁹ wherein each R^{15'}, R^{16'}, R^{17'}, R^{18'}, R^{19'}, R^{20'}, R^{21'} and R22' are selected independently of each other, from the group consisting of hydrogen, fluorine, methyl, ethyl, isopro-

pyl, CH_2F , CHF_2 , CF_3 , CHF— CH_3 , CF_2 — CH_3 , CH_2 — CH_2F CH_2 — CHF_2 and CH_2 — CF_3 ;

 $R^{23'}, R^{24'}$ and $R^{25'}$ are selected independently of each other, from the group consisting of hydrogen, halogen, cyano, $C_1\text{-}C_4$ alkyl, $C_1\text{-}C_4$ haloalkyl, $C_1\text{-}C_4$ alkoxy, $C_3\text{-}C_6$ cycloalkyl, $C_3\text{-}C_6$ halocycloalkyl and $C_1\text{-}C_4$ alkylthio;

n is 1:

 R^{5ci} is G^9 wherein $R^{15'}$, $R^{16'}$, $R^{17'}$, $R^{18'}$, $R^{19'}$, $R^{20'}$, $R^{21'}$ and $R^{22'}$ are each hydrogen;

 $R^{23'}, R^{24'}$ and $R^{25'}$ are selected independently of each other, from the group consisting of hydrogen, halogen, cyano, $C_1\text{-}C_4$ alkyl, $C_1\text{-}C_4$ haloalkyl, $C_1\text{-}C_4$ alkoxy, $C_3\text{-}C_6$ cycloalkyl, $C_3\text{-}C_6$ halocycloalkyl and $C_1\text{-}C_4$ alkylthio;

n is 1:

 R^{5cf} is G^9 wherein $R^{15'}$ and $R^{16'}$ are selected independently of each other, from the group consisting of methyl, F and CF_3 ; each $R^{17'},\,R^{18'},\,R^{19'},\,R^{20'},\,R^{21'}$ and $R^{22'}$ are selected independently of each other, from the group consisting of hydrogen, halogen, cyano, $C_1\text{-}C_4$ alkyl, $C_1\text{-}C_4$ haloalkyl, $C_1\text{-}C_4$ alkoxy, $C_1\text{-}C_4$ haloalkoxy and $C_3\text{-}C_6$ cycloalkyl;

 $R^{23'}, R^{24'}$ and $R^{25'}$ are selected independently of each other, from the group consisting of hydrogen, halogen, cyano, $C_1\text{-}C_4$ alkyl, $C_1\text{-}C_4$ haloalkyl, $C_1\text{-}C_4$ alkoxy, $C_3\text{-}C_6$ cycloalkyl, $C_3\text{-}C_6$ halocycloalkyl and $C_1\text{-}C_4$ alkylthio;

 R^{5ck} is G^9 wherein $R^{15'}$ is selected from the group consisting of hydrogen, halogen, cyano, C_1 - C_4 alkyl, C_1 - C_4

haloalkyl and C_3 - C_6 cycloalkyl; each $R^{16'}$, $R^{17'}$, $R^{18'}$, $R^{19'}$, $R^{20'}$, $R^{21'}$ and $R^{22'}$ is selected 30 independently of each other, from the group consisting of

R^{23'}, R^{24'} and R^{25'} are selected independently of each other, from the group consisting of hydrogen, halogen, cyano, C_1 - C_4 alkyl, C_1 - C_4 haloalkyl, C_1 - C_4 alkoxy, C_3 - C_6 35 cycloalkyl, C_3 - C_6 halocycloalkyl and C_1 - C_4 alkylthio;

n is 1;

 R^{5cl} is G^9 wherein $R^{15'}$ and $R^{16'}$ are selected independently of each other, from the group consisting of hydrogen, halogen, cyano, C_1 - C_4 alkyl, C_1 - C_4 haloalkyl and C_3 - C_6 40 cycloalkyl;

each R¹⁷, R¹⁸, R¹⁹, R²⁰, R²¹ and R²² are selected independently of each other, from the group consisting of hydrogen, halogen, cyano, C₁-C₄ alkyl, C₁-C₄ haloalkyl, C₁-C₄ alkoxy, C₁-C₄ haloalkoxy and C₂-C₆ cycloalkyl:

alkoxy, C_1 - C_4 haloalkoxy and C_3 - C_6 cycloalkyl; $R^{23'}$, $R^{24'}$ and $R^{25'}$ are selected independently of each other, from the group consisting of hydrogen, cyano, halogen, methyl, ethyl, isopropyl, monofluoromethyl, polyfluoromethyl, monofluoroethyl, and polyfluoroethyl;

n is 1:

 R^{5cm} is G^9 wherein each $R^{15}, R^{16}, R^{17}, R^{18}, R^{19}, R^{20}, R^{21}$ and R^{22} are selected independently of each other, from the group consisting of hydrogen, halogen, methyl, ethyl, isopropyl, monofluoromethyl, polyfluoromethyl, monofluoroethyl, and polyfluoroethyl;

R²³', R²⁴' and R²⁵' are selected independently of each other, from the group consisting of hydrogen, cyano, halogen, methyl, ethyl, isopropyl, monofluoromethyl, polyfluoromethyl, monofluoroethyl, and polyfluoroethyl;

n is 1:

 R^{5cn} is G^9 wherein each $R^{15'}$, $R^{16'}$, $R^{17'}$, $R^{18'}$, $R^{19'}$, $R^{20'}$, $R^{21'}$ and $R^{22'}$ are selected independently of each other, from the group consisting of hydrogen, fluorine, methyl, ethyl, isopropyl, CH_2F , CH_2 , CF_3 , CHF— CH_3 , CF_2 — CH_3 , CH_2 — CH_2F CH_2 — CH_2 and CH_2 — CF_3 ;

R²³', R²⁴' and R²⁵' are selected independently of each other, from the group consisting of hydrogen, cyano, halogen,

64

methyl, ethyl, isopropyl, monofluoromethyl, polyfluoromethyl, monofluoroethyl, and polyfluoroethyl;

n is 1:

 $R^{5\it co}$ is G^9 wherein $R^{15'}, R^{16'}, R^{17'}, R^{18'}, R^{19'}, R^{20'}, R^{21'}$ and $R^{22'}$ are each hydrogen;

R^{23'}, R^{24'} and R^{25'} are selected independently of each other, from the group consisting of hydrogen, cyano, halogen, methyl, ethyl, isopropyl, monofluoromethyl, polyfluoromethyl, monofluoroethyl, and polyfluoroethyl;

n is 1;

 $R^{5\it cp}$ is G^9 wherein $R^{15'}$ and $R^{16'}$ are selected independently of each other, from the group consisting of methyl, F and CF $_3$; each $R^{17'},\,R^{18'},\,R^{19'},\,R^{20'},\,R^{21'}$ and $R^{22'}$ are selected independently of each other, from the group consisting of hydrogen, halogen, cyano, $C_1\text{-}C_4$ alkyl, $C_1\text{-}C_4$ haloalkyl, $C_1\text{-}C_4$ alkoxy, $C_1\text{-}C_4$ haloalkoxy and $C_3\text{-}C_6$ cycloalkyl; $R^{23'},\,R^{24'}$ and $R^{25'}$ are selected independently of each other,

R²³′, R²⁴′ and R²⁵′ are selected independently of each other, from the group consisting of hydrogen, cyano, halogen, methyl, ethyl, isopropyl, monofluoromethyl, polyfluoromethyl, monofluoroethyl, and polyfluoroethyl:

n is 1

 R^{5cq} is G^9 wherein R^{15} is selected from the group consisting of hydrogen, halogen, cyano, C_1 - C_4 alkyl, C_1 - C_4 haloalkyl and C_3 - C_6 cycloalkyl;

haloalkyl and C₃-C₆ cycloalkyl; each R¹⁶′, R¹⁷′, R¹⁸′, R¹⁹′, R²⁰′, R²¹′ and R²²′ is hydrogen; R²³′, R²⁴′ and R²⁵′ are selected independently of each other, from the group consisting of hydrogen, cyano, halogen, methyl, ethyl, isopropyl, monofluoromethyl, polyfluoromethyl, monofluoroethyl, and polyfluoroethyl;

n is 1

 R^{5cr} is G^9 wherein $R^{15'}$ and $R^{16'}$ are selected independently of each other, from the group consisting of hydrogen, halogen, cyano, C_1 - C_4 alkyl, C_1 - C_4 haloalkyl and C_3 - C_6 cycloalkyl;

each R^{17} , R^{18} , R^{19} , R^{20} , R^{21} and R^{22} are selected independently of each other, from the group consisting of hydrogen, halogen, cyano, C_1 - C_4 alkyl, C_1 - C_4 haloalkyl, C_1 - C_4 alkoxy, C_1 - C_4 haloalkoxy and C_3 - C_6 cycloalkyl;

R²⁵', R²⁴' and R²⁵' are selected independently of each other, from the group consisting of hydrogen, F, Cl, Br, methyl, ethyl, isopropyl, CH₂F, CHF₂, CF₃, CHF—CH₃, CF₂—CH₃, CH₂—CH₂F CH₂—CHF₂ and CH₂—CF₃;

n is 1;

R^{5cs} is G⁹ wherein each R^{15'}, R^{16'}, R^{17'}, R^{18'}, R^{19'}, R^{20'}, R^{21'} and R^{22'} are selected independently of each other, from the group consisting of hydrogen, halogen, methyl, ethyl, isopropyl, monofluoromethyl, polyfluoromethyl, monofluoroethyl, and polyfluoroethyl;

R²³', R²⁴' and R²⁵' are selected independently of each other, from the group consisting of hydrogen, F, Cl, Br, methyl, ethyl, isopropyl, CH₂F, CHF₂, CF₃, CHF—CH₃, CF₂—CH₃, CH₂—CH₂F CH₂—CHF₂ and CH₂—CF₃;

n is 1

R^{5ct} is G⁹ wherein each R^{15'}, R^{16'}, R^{17'}, R^{18'}, R^{19'}, R^{20'}, R^{21'} 55 and R^{22'} are selected independently of each other, from the group consisting of hydrogen, fluorine, methyl, ethyl, isopropyl, CH₂F, CHF₂, CF₃, CHF—CH₃, CF₂—CH₃, CH₂— CH₂F CH₂—CHF₂ and CH₂—CF₃;

R^{23'}, R^{24'} and R^{25'} are selected independently of each other, from the group consisting of hydrogen, F, Cl, Br, methyl, ethyl, isopropyl, CH₂F, CHF₂, CF₃, CHF—CH₃, CF₂—CH₃, CH₂—CH₂F CH₂—CHF₂ and CH₂—CF₃;

n is 1;

 R^{5cu} is G^9 wherein $R^{15'}, R^{16'}, R^{17'}, R^{18'}, R^{19'}, R^{20'}, R^{21'}$ and 65 $R^{22'}$ are each hydrogen;

R^{23'}, R^{24'} and R^{25'} are selected independently of each other, from the group consisting of hydrogen, F, Cl, Br, methyl,

ethyl, isopropyl, CH₂F, CHF₂, CF₃, CHF—CH₃, CF₂—CH₃, CH₂—CH₂F CH₂—CHF₂ and CH₂—CF₃; n is 1:

 R^{5cv} is G^9 wherein $R^{15'}$ and $R^{16'}$ are selected independently of each other, from the group consisting of methyl, F and CF₃; each R¹⁷, R¹⁸, R¹⁹, R²⁰, R²¹ and R²² are selected independently of each other, from the group consisting of hydrogen, halogen, cyano, C1-C4 alkyl, C1-C4 haloalkyl, C1-C4 alkoxy, C_1 - C_4 haloalkoxy and C_3 - C_6 cycloalkyl; R^{23} ', R^{24} ' and R^{25} ' are selected independently of each other,

from the group consisting of hydrogen, F, Cl, Br, methyl, ethyl, isopropyl, CH₂F, CHF₂, CF₃, CHF—CH₃, CF₂—CH₃, CH₂—CH₂F CH₂—CHF₂ and CH₂—CF₃; n is 1;

 R^{5cw} is G^9 wherein $R^{15'}$ is selected from the group consisting of hydrogen, halogen, cyano, C₁-C₄ alkyl, C₁-C₄

haloalkyl and C_3 - C_6 cycloalkyl; each $R^{16'}$, $R^{17'}$, $R^{18'}$, $R^{19'}$, $R^{20'}$, $R^{21'}$ and $R^{22'}$ is hydrogen; $R^{23'}$, $R^{24'}$ and $R^{25'}$ are selected independently of each other, from the group consisting of hydrogen, F, Cl, Br, methyl, 20 ethyl, isopropyl, CH₂F, CHF₂, CF₃, CHF—CH₃, CF₂—CH₃, CH₂—CH₂F CH₂—CHF₂ and CH₂—CF₃; n is 1:

 R^{5cx} is G^{14} wherein G^{14} is

$$\mathbb{R}^{46'} = \mathbb{R}^{46'} \times \mathbb{R}^{44'} \times \mathbb{R}^{41'} \times \mathbb{R}^{39'} \times \mathbb{R}^{37'} \times \mathbb{R}^{47'} \times \mathbb{R}^{48'} \times \mathbb{R}^{48'} \times \mathbb{R}^{48'} \times \mathbb{R}^{48'} \times \mathbb{R}^{49'} \times \mathbb{R}^{38'} \times \mathbb{R}^{48'} \times \mathbb{R}^{49'} \times \mathbb{R}^{38'} \times \mathbb{R}^{48'} \times \mathbb{R}^{49'} \times \mathbb{R}^{48'} \times \mathbb{R}^{49'} \times \mathbb{R$$

wherein $R^{37'}$ and $R^{38'}$ are selected independently of each $\ _{35}$ other from the group consisting of hydrogen, halogen, cyano, $C_1\text{-}C_4$ alkyl and $C_1\text{-}C_4$ haloalkyl; $R^{39'},\,R^{40'},\,R^{41'},\,R^{42'},\,R^{43'}$ and $R^{44'}$ are selected independent

dently of each other from the group consisting of hydrogen, halogen, hydroxy, cyano, C₁-C₄ alkyl, C₁-C₄ haloalkyl, 40 C_1 - C_4 alkoxy and C_1 - C_4 haloalkoxy and C_1 - C_4 alkylthio;

, $R^{46'}$, $R^{47'}$, $R^{48'}$ and $R^{49'}$ are selected, independently of each other, from the group consisting of hydrogen, halogen, CN, NO₂, OH, SH, CHO, C(=O)NH₂, C(=O)NH(CH₃), $C(=O)N(CH_3)_2$, $C(=S)NH_2$, $C(=S)NH(CH_3)$, C(=S)N 45 (CH₃)₂, SO₂NH₂, SO₂NH(CH₃), SO₂N(CH₃)₂, C₁-C₆ alkyl, C₁-C₆ haloalkyl, C₃-C₆ cycloalkyl, C₂-C₆ alkenyl, C₂-C₆ haloalkenyl, C₂-C₆ alkynyl, C₂-C₆ haloalkynyl, C₁-C₆ alkoxy, C₁-C₆ haloalkoxy, C₃-C₆ alkenyloxy, C₃-C₆ haloalkenyloxy, C_3 - C_6 alkynyloxy, C_3 - C_6 cycloalkoxy, C_3 - C_6 halosov cycloalkoxy, C_1 - C_6 alkylthio, C_1 - C_6 haloalkylsulfinyl, C_1 - C_6 alkylsulfinyl, C_1 - C_6 haloalkylsulfinyl, C_1 - C_6 alkylsulfonyl and C₁-C₆ haloalkylsulfonyl;

p and q are independently selected from 0 and 1;

 R^{5cy} is G^{14} wherein $R^{37'}$, $R^{38'}$, $R^{39'}$, $R^{40'}$, $R^{41'}$, $R^{42'}$, $R^{43'}$ and 55 R^{44'} are selected independently of each other from the group consisting of hydrogen, halogen, methyl, ethyl, isopropyl, monofluoromethyl, polyfluoromethyl, monofluoroethyl and polyfluoroethyl;

each other, from the group consisting of hydrogen, halogen, CN, NO₂, OH, SH, CHO, C(\rightleftharpoons O)NH₂, C(\rightleftharpoons O)NH(CH₃), $C(=O)N(CH_3)_2$, $C(=S)NH_2$, $C(=S)NH(CH_3)$, C(=S)N(CH₃)₂, SO₂NH₂, SO₂NH(CH₃), SO₂N(CH₃)₂, C₁-C₆ alkyl, C₁-C₆ haloalkyl, C₃-C₆ cycloalkyl, C₂-C₆ alkenyl, C₂-C₆ 65 haloalkenyl, C₂-C₆ alkynyl, C₂-C₆ haloalkynyl, C₁-C₆ alkoxy, C₁-C₆ haloalkoxy, C₃-C₆ alkenyloxy, C₃-C₆ haloalk66

enyloxy, C3-C6 alkynyloxy, C3-C6 cycloalkoxy, C3-C6 halocycloalkoxy, C₁-C₆ alkylthio, C₁-C₆ haloalkylthio, C₁-C₆ alkylsulfinyl, $\mathrm{C}_1\text{-}\mathrm{C}_6$ haloalkylsulfinyl, $\mathrm{C}_1\text{-}\mathrm{C}_6$ alkylsulfonyl and C_1 - C_6 haloalkylsulfonyl;

p and q are independently selected from 0 and 1; $R^{5cz} \text{ is } G^{14} \text{ wherein } R^{37'}, R^{38'}, R^{39'}, R^{40'}, R^{41'}, R^{42'}, R^{43'} \text{ and }$ R^{44'} are selected independently of each other from the group consisting of hydrogen, fluorine, methyl, ethyl, isopropyl, CH₂F, CHF₂, CF₃, CHF—CH₃, CF₂—CH₃, CH₂—CH₂F CH₂—CHF₂ and CH₂—CF₃;

 $R^{45'}$, $R^{46'}$, $R^{47'}$, $R^{48'}$ and $R^{49'}$ are selected, independently of each other, from the group consisting of hydrogen, halogen, $CN, NO_2, OH, SH, CHO, C(=O)NH_2, C(=O)NH(CH_3),$ $C(=O)N(CH_3)_2$, $C(=S)NH_2$, $C(=S)NH(CH_3)$, $C(=S)N(CH_3)_2$, SO_2NH_2 , $SO_2NH(CH_3)$, $SO_2N(CH_3)_2$, C_1 - C_6 alkyl, C_1 - C_6 haloalkyl, C_3 - C_6 cycloalkyl, C_2 - C_6 alkenyl, C_2 - C_6 haloalkenyl, C₂-C₆ alkynyl, C₂-C₆ haloalkynyl, C₁-C₆ alkoxy, C₁-C₆ haloalkoxy, C₃-C₆ alkenyloxy, C₃-C₆ haloalkenyloxy, C₃-C₆ alkynyloxy, C₃-C₆ cycloalkoxy, C₃-C₆ halocycloalkoxy, C₁-C₆ alkylthio, C₁-C₆ haloalkylthio, C₁-C₆ alkylsulfinyl, C_1 - C_6 haloalkylsulfinyl, C_1 - C_6 alkylsulfonyl and C₁-C₆ haloalkylsulfonyl;

p and q are independently selected from 0 and 1; R^{5da} is G^{14} wherein R^{37} , R^{38} , R^{39} , R^{40} , R^{41} , R^{42} , R^{43} and 25 R^{44'} are selected independently of each other from the group consisting of methyl, ethyl, F and CF $_3$; R^{45'}, R^{46'}, R^{47'}, R^{48'} and R^{49'} are selected, independently of

each other, from the group consisting of hydrogen, halogen, CN, NO₂, OH, SH, CHO, C(=O)NH₂, C(=O)NH(CH₃), 30 $C(=O)N(CH_3)_2$, $C(=S)NH_2$, $C(=S)NH(CH_3)$, C(=S)N(CH₃)₂, SO₂NH₂, SO₂NH(CH₃), SO₂N(CH₃)₂, C₁-C₆ alkyl, C₁-C₆ haloalkyl, C₃-C₆ cycloalkyl, C₂-C₆ alkenyl, C₂-C₆ haloalkenyl, C_2 - C_6 alkynyl, C_2 - C_6 haloalkynyl, C_1 - C_6 alkoxy, C_1 - C_6 haloalkoxy, C_3 - C_6 alkenyloxy, C_3 - C_6 haloalkenyloxy, C_3 - C_6 alkynyloxy, C_3 - C_6 cycloalkoxy, C_3 - C_6 halocycloalkoxy, C_1 - C_6 alkylthio, C_1 - C_6 haloalkylulfinyl, C_1 - C_6 alkylsulfinyl, C_1 - C_6 alkylsulfinyl, C_1 - C_6 alkylsulfonyl and C₁-C₆ haloalkylsulfonyl;

p and q are independently selected from 0 and 1; R^{5db} is G^{14} wherein $R^{37'}$, $R^{38'}$, $R^{39'}$, $R^{40'}$, $R^{41'}$, $R^{42'}$, $R^{43'}$ and R44' are each hydrogen;

 $R^{45'}$, $R^{46'}$, $R^{47'}$, $R^{48'}$ and $R^{49'}$ are selected, independently of each other, from the group consisting of hydrogen, halogen, CN, NO₂, OH, SH, CHO, C(=O)NH₂, C(=O)NH(CH₃), $C(=O)N(CH_3)_2$, $C(=S)NH_2$, $C(=S)NH(CH_3)$, C(=S)N(CH₃)₂, SO₂NH₂, SO₂NH(CH₃), SO₂N(CH₃)₂, C₁-C₆ alkyl, C₁-C₆ haloalkyl, C₃-C₆ cycloalkyl, C₂-C₆ alkenyl, C₂-C₆ haloalkenyl, C_2 - C_6 alkynyl, C_2 - C_6 haloalkynyl, C_1 - C_6 alkoxy, C₁-C₆ haloalkoxy, C₃-C₆ alkenyloxy, C₃-C₆ haloalkenyloxy, C_3 - C_6 alkynyloxy, C_3 - C_6 cycloalkoxy, C_3 - C_6 halocycloalkoxy, C_1 - C_6 alkylthio, C_1 - C_6 haloalkylsulfinyl, C_1 - C_6 alkylsulfonyl and C₁-C₆ haloalkylsulfonyl;

p and q are independently selected from 0 and 1;

R^{5dc} is G¹⁴ wherein R³⁷ is selected independently of each other from the group consisting of hydrogen, halogen, cyano,

 $C_1\text{-}C_4$ alkyl and $C_1\text{-}C_4$ haloalkyl; $R^{38'}, R^{39'}, R^{40'}, R^{41'}, R^{42'}, R^{43'} \text{ and } R^{44'} \text{ are each hydrogen;}$ R⁴⁵′, R⁴⁶′, R⁴⁷′, R⁴⁸′ and R⁴⁹′ are selected, independently of R^{45'}, R^{46'}, R^{47'}, R^{48'} and R^{49'} are selected, independently of 60 each other, from the group consisting of hydrogen, halogen, CN, NO₂, OH, SH, CHO, C(=O)NH₂, C(=O)NH(CH₃), $C(=O)N(CH_3)_2$, $C(=S)NH_2$, $C(=S)NH(CH_3)$, C(=S)N(CH₃)₂, SO₂NH₂, SO₂NH(CH₃), SO₂N(CH₃)₂, C₁-C₆ alkyl, C₁-C₆ haloalkyl, C₃-C₆ cycloalkyl, C₂-C₆ alkenyl, C₂-C₆ haloalkenyl, C2-C6 alkynyl, C2-C6 haloalkynyl, C1-C6 alkoxy, C₁-C₆ haloalkoxy, C₃-C₆ alkenyloxy, C₃-C₆ haloalkenyloxy, C₃-C₆ alkynyloxy, C₃-C₆ cycloalkoxy, C₃-C₆ halo-

cycloalkoxy, C_1 - C_6 alkylthio, C_1 - C_6 haloalkylthio, C_1 - C_6 alkylsulfinyl, C_1 - C_6 haloalkylsulfinyl, C_1 - C_6 alkylsulfonyl

p and q are independently selected from 0 and 1;

and C₁-C₆ haloalkylsulfonyl;

 R^{5de} is G^{14} wherein R^{37} and R^{38} are selected indepen- 5 dently of each other from the group consisting of hydrogen,

halogen, cyano, C_1 - C_4 alkyl and C_1 - C_4 haloalkyl; $R^{39'}$, $R^{40'}$, $R^{41'}$, $R^{42'}$, $R^{43'}$, and $R^{44'}$ are selected independent dently of each other from the group consisting of hydrogen, halogen, hydroxy, cyano, C₁-C₄ alkyl, C₁-C₄ haloalkyl, 10 C_1 - C_4 alkoxy and C_1 - C_4 haloalkoxy and C_1 - C_4 alkylthio; $R^{45'}$, $R^{46'}$, $R^{47'}$, $R^{48'}$ and $R^{49'}$ are selected, independently of

each other, from the group consisting of hydrogen, F, Cl, Br, I, methyl, ethyl, isopropyl, cyclopropyl, C \equiv CH, CH \equiv CH₂, $C(CH_3) = CH_2, CF_3, CHF_2, CH_2F, -CHF - CH_3, -CF_2 - 15$ CH₃, methoxy, trifluoromethoxy, ethoxy, methlythio, methylsulfinyl and methylsulfonyl;

p and q are independently selected from 0 and 1;

 \hat{R}^{5df} is \hat{G}^{14} wherein $R^{37'}$, $\hat{R}^{38'}$, $R^{39'}$, $R^{40'}$, $R^{41'}$, $R^{42'}$, $R^{43'}$ and R^{44'} are selected independently of each other from the group 20 consisting of hydrogen, halogen, methyl, ethyl, isopropyl, monofluoromethyl, polyfluoromethyl, monofluoroethyl and polyfluoromethyl;

R^{45'}, R^{46'}, R^{47'}, R^{48'} and R^{49'} are selected, independently of each other, from the group consisting of hydrogen, F, Cl, Br, 25 I, methyl, ethyl, isopropyl, cyclopropyl, C=CH, CH=CH₂, C(CH₃)=CH₂, CF₃, CHF₂, CH₂F, —CHF—CH₃, —CF₂ CH₃, methoxy, trifluoromethoxy, ethoxy, methlythio, methylsulfinyl and methylsulfonyl;

p and q are independently selected from 0 and 1;

 R^{5dg} is G^{14} wherein $R^{37'}$, $R^{38'}$, $R^{39'}$, $R^{40'}$, $R^{41'}$, $R^{42'}$, $R^{43'}$ and R^{44'} are selected independently of each other from the group consisting of hydrogen, fluorine, methyl, ethyl, isopropyl, CH₂F, CHF₂, CF₃, CHF—CH₃, CF₂—CH₃, CH₂—CH₂F

CH₂—CHF₂ and CH₂—CF₃; $R^{45'}, R^{46'}, R^{47'}, R^{48'} \text{ and } R^{49'} \text{ are selected, independently of}$ each other, from the group consisting of hydrogen, F, Cl, Br, I, methyl, ethyl, isopropyl, cyclopropyl, C=CH, CH=CH₂, C(CH₃)=CH₂, CF₃, CHF₂, CH₂F, -CHF-CH₃, -CF₂-CH₃, methoxy, trifluoromethoxy, ethoxy, methlythio, meth- 40 methyl, CF₃, CHF₂, CH₂F, methoxy and trifluoromethoxy; ylsulfinyl and methylsulfonyl;

p and q are independently selected from 0 and 1; R^{5dh} is G^{14} wherein $R^{37'}$, $R^{38'}$, $R^{39'}$, $R^{40'}$, $R^{41'}$, $R^{42'}$, $R^{43'}$ and 44' are selected independently of each other from the group consisting of methyl, ethyl, F and CF_3 ; $R^{45'}, R^{46'}, R^{47'}, R^{48'}$ and $R^{49'}$ are selected, independently of

each other, from the group consisting of hydrogen, F, Cl, Br, I, methyl, ethyl, isopropyl, cyclopropyl, C=CH, CH=CH₂, C(CH₃)=CH₂, CF₃, CHF₂, CH₂F, --CHF--CH₃, --CF₂-CH₃, methoxy, trifluoromethoxy, ethoxy, methlythio, meth- 50 haloalkyl; ylsulfinyl and methylsulfonyl;

p and q are independently selected from 0 and 1;

 R^{5di} is G^{14} wherein $R^{37'}$, $R^{38'}$, $R^{39'}$, $R^{40'}$, $R^{41'}$, $R^{42'}$, $R^{43'}$ and

R44' are each hydrogen;

 $R^{45'}$, $R^{46'}$, $R^{47'}$, $R^{48'}$ and $R^{49'}$ are selected, independently of 55 each other, from the group consisting of hydrogen, F, Cl, Br, I, methyl, ethyl, isopropyl, cyclopropyl, C=CH, CH=CH₂, $C(CH_3)=CH_2$, CF_3 , CHF_2 , CH_2F , $-CHF-CH_3$, $-CF_2-CH_3$ CH₃, methoxy, trifluoromethoxy, ethoxy, methlythio, methylsulfinyl and methylsulfonyl;

 $p \ and \ q \ are \ independently \ selected \ from \ 0 \ and \ 1;$

 R^{5dj} is G^{14} wherein $R^{37'}$ is selected independently of each other from the group consisting of hydrogen, halogen, cyano,

 C_1 - C_4 alkyl and C_1 - C_4 haloalkyl; $R^{38'}$, $R^{39'}$, $R^{40'}$, $R^{41'}$, $R^{42'}$, $R^{43'}$ and $R^{44'}$ are each hydrogen; 65 $R^{45'}$, $R^{46'}$, $R^{47'}$, $R^{48'}$ and $R^{49'}$ are selected, independently of each other, from the group consisting of hydrogen, F, Cl, Br,

68

I, methyl, ethyl, isopropyl, cyclopropyl, C = CH, $CH = CH_2$, C(CH₃)=CH₂, CF₃, CHF₂, CH₂F, —CHF—CH₃, —CF₂-CH₃, methoxy, trifluoromethoxy, ethoxy, methlythio, methylsulfinyl and methylsulfonyl;

p and q are independently selected from 0 and 1; R^{5dk} is G^{14} wherein R^{37} and R^{38} are selected independently dently of each other from the group consisting of hydrogen,

halogen, cyano, C_1 - C_4 alkyl and C_1 - C_4 haloalkyl; $R^{39'},\,R^{40'},\,R^{41'},\,R^{42'},\,R^{43'}$ and $R^{44'}$ are selected independent dently of each other from the group consisting of hydrogen, halogen, hydroxy, cyano, C₁-C₄ alkyl, C₁-C₄ haloalkyl,

 $C_1\text{-}C_4$ alkoxy and $C_1\text{-}C_4$ haloalkoxy and $C_1\text{-}C_4$ alkylthio; $R^{45'},R^{46'},R^{47'},R^{48'}$ and $R^{49'}$ are selected, independently of each other, from the group consisting of hydrogen, F, Cl, methyl, CF₃, CHF₂, CH₂F, methoxy and trifluoromethoxy;

p and q are independently selected from 0 and 1;

 R^{5dl} is G^{14} wherein $R^{37'}$, $R^{38'}$, $R^{39'}$, $R^{40'}$, $R^{42'}$, $R^{43'}$ and $R^{44'}$ are selected independently of each other from the group consisting of hydrogen, halogen, methyl, ethyl, isopropyl, monofluoromethyl, polyfluoromethyl, monofluoroethyl and polyfluoroethyl;

 $R^{45'}$, $R^{46'}$, $R^{47'}$, $R^{48'}$ and $R^{49'}$ are selected, independently of each other, from the group consisting of hydrogen, F, Cl, methyl, CF₃, CHF₂, CH₂F, methoxy and trifluoromethoxy;

p and q are independently selected from 0 and 1; R^{5dm} is G^{14} wherein $R^{37'}$, $R^{38'}$, $R^{39'}$, $R^{40'}$, $R^{41'}$, $R^{42'}$, $R^{43'}$ and R44' are selected independently of each other from the group consisting of hydrogen, fluorine, methyl, ethyl, isopropyl, CH₂F, CHF₂, CF₃, CHF—CH₃, CF₂—CH₃, CH₂-CH₂F CH₂—CHF₂ and CH₂—CF₃;

 $R^{45'}$, $R^{46'}$, $R^{47'}$, $R^{48'}$ and $R^{49'}$ are selected, independently of each other, from the group consisting of hydrogen, F, Cl, methyl, CF₃, CHF₂, CH₂F, methoxy and trifluoromethoxy;

p and q are independently selected from 0 and 1;

 R^{5dn} is G^{14} wherein $R^{37'}$, $R^{38'}$, $R^{39'}$, $R^{40'}$, $R^{41'}$, $R^{42'}$, $R^{43'}$ and $R^{44^{\prime}}$ are selected independently of each other from the group consisting of methyl, ethyl, F and CF₃;

R⁴⁵', R⁴⁶', R⁴⁷', R⁴⁸' and R⁴⁹' are selected, independently of each other, from the group consisting of hydrogen, F, Cl,

p and q are independently selected from 0 and 1; R^{5do} is G^{14} wherein $R^{37'}$, $R^{38'}$, $R^{39'}$, $R^{40'}$, $R^{41'}$, $R^{42'}$, $R^{43'}$ and

R44' are each hydrogen;

 $R^{45'}$, $R^{46'}$, $R^{47'}$, $R^{48'}$ and $R^{49'}$ are selected, independently of 45 each other, from the group consisting of hydrogen, F, Cl, methyl, CF₃, CHF₂, CH₂F, methoxy and trifluoromethoxy; p and q are independently selected from 0 and 1;

 R^{5dp} is G^{14} wherein R^{37} is selected from the group consisting of hydrogen, halogen, cyano, C₁-C₄ alkyl and C₁-C₄

 $R^{38'}$, $R^{39'}$, $R^{40'}$, $R^{41'}$, $R^{42'}$, $R^{43'}$ and $R^{44'}$ are each hydrogen; $R^{45'}$, $R^{46'}$, $R^{47'}$, $R^{48'}$ and $R^{49'}$ are solved. each other, from the group consisting of hydrogen, F, Cl, methyl, CF₃, CHF₂, CH₂F, methoxy and trifluoromethoxy;

p and q are independently selected from 0 and 1;

 R^{5dq} is G^{14} wherein R^{37} and R^{38} are selected independently of each other from the group consisting of hydrogen,

halogen, cyano, C_1 - C_4 alkyl and C_1 - C_4 haloalkyl; $R^{39'},\,R^{40'},\,R^{41'},\,R^{42'},\,R^{43'}$ and $R^{44'}$ are selected independent 60 dently of each other from the group consisting of hydrogen, halogen, hydroxy, cyano, C₁-C₄ alkyl, C₁-C₄ haloalkyl, $C_1\text{-}C_4$ alkoxy, and $C_1\text{-}C_4$ haloalkoxy and $C_1\text{-}C_4$ alkylthio; $R^{45'},R^{46'},R^{47'},R^{48'}$ and $R^{49'}$ are selected, independently of

each other, from the group consisting of hydrogen, halogen, CN, NO₂, OH, SH, CHO, C(=O)NH₂, C(=O)NH(CH₃), $C(=O)N(CH_3)_2$, $C(=S)NH_2$, $C(=S)NH(CH_3)$, C(=S)N(CH₃)₂, SO₂NH₂, SO₂NH(CH₃), SO₂N(CH₃)₂, C₁-C₆ alkyl,

70

C1-C6 haloalkyl, C3-C6 cycloalkyl, C2-C6 alkenyl, C2-C6 haloalkenyl, C₂-C₆ alkynyl, C₂-C₆ haloalkynyl, C₁-C₆ alkoxy, C₁-C₆ haloalkoxy, C₃-C₆ alkenyloxy, C₃-C₆ haloalkenyloxy, $\mathrm{C_3\text{-}C_6}$ alkynyloxy, $\mathrm{C_3\text{-}C_6}$ cycloalkoxy, $\mathrm{C_3\text{-}C_6}$ halocycloalkoxy, $\mathrm{C}_1\text{-}\mathrm{C}_6$ alkylthio, $\mathrm{C}_1\text{-}\mathrm{C}_6$ haloalkylthio, $\mathrm{C}_1\text{-}\mathrm{C}_6$ alkylsulfinyl, C_1 - C_6 haloalkylsulfinyl, C_1 - C_6 alkylsulfonyl and C₁-C₆ haloalkylsulfonyl;

p and q are each 0;

 R^{5dr} is G^{14} wherein R^{37} , R^{38} , R^{39} , R^{40} , R^{41} , R^{42} , R^{43} and R^{44'} are selected independently of each other from the group 10 consisting of hydrogen, halogen, methyl, ethyl, isopropyl, monofluoromethyl, polyfluoromethyl, monofluoroethyl and polyfluoroethyl;

 $\mathring{R}^{45'}, \mathring{R}^{46'}, \mathring{R}^{47'}, \mathring{R}^{48'}$ and $\mathring{R}^{49'}$ are selected, independently of each other, from the group consisting of hydrogen, halogen, 15 CN, NO₂, OH, SH, CHO, C(=O)NH₂, C(=O)NH(CH₃), $C(=O)N(CH_3)_2$, $C(=S)NH_2$, $C(=S)NH(CH_3)$, C(=S)N $(\mathring{CH}_3)_2$, $\mathring{SO}_2\mathring{NH}_2$, $\mathring{SO}_2\mathring{NH}(\mathring{CH}_3)$, $\mathring{SO}_2\mathring{N}(\mathring{CH}_3)_2$, \mathring{C}_1 - \mathring{C}_6 alkyl, C₁-C₆ haloalkyl, C₃-C₆ cycloalkyl, C₂-C₆ alkenyl, C₂-C₆ haloalkenyl, C_2 - C_6 alkynyl, C_2 - C_6 haloalkynyl, C_1 - C_6 20 alkoxy, C₁-C₆ haloalkoxy, C₃-C₆ alkenyloxy, C₃-C₆ haloalkenyloxy, $\rm C_3$ - $\rm C_6$ alkynyloxy, $\rm C_3$ - $\rm C_6$ cycloalkoxy, $\rm C_3$ - $\rm C_6$ halocycloalkoxy, C_1 - C_6 alkylthio, C_1 - C_6 haloalkylthio, C_1 - C_6 alkylsulfinyl, C_1 - C_6 haloalkylsulfinyl, C_1 - C_6 alkylsulfonyl and C₁-C₆ haloalkylsulfonyl;

p and q are each 0;

 R^{5ds} is G^{14} wherein $R^{37'}$, $R^{38'}$, $R^{39'}$, $R^{40'}$, $R^{41'}$, $R^{42'}$, $R^{43'}$ and R^{44'} are selected independently of each other from the group consisting of hydrogen, fluorine, methyl, ethyl, isopropyl, CH₂F, CHF₂, CF₃, CHF—CH₃, CF₂—CH₃, CH₂—CH₂F 30

CH₂—CHF₂ and CH₂—CF₃; $R^{45'}, R^{46'}, R^{47'}, R^{48'} \text{ and } R^{49'} \text{ are selected, independently of}$ each other, from the group consisting of hydrogen, halogen, CN, NO₂, OH, SH, CHO, C(=O)NH₂, C(=O)NH(CH₃), $C(=O)N(CH_3)_2$, $C(=S)NH_2$, $C(=S)NH(CH_3)$, C(=S)N 35 (CH₃)₂, SO₂NH₂, SO₂NH(CH₃), SO₂N(CH₃)₂, C₁-C₆ alkyl, C₁-C₆ haloalkyl, C₃-C₆ cycloalkyl, C₂-C₆ alkenyl, C₂-C₆ haloalkenyl, C₂-C₆ alkynyl, C₂-C₆ haloalkynyl, C₁-C₆ alkoxy, C1-C6 haloalkoxy, C3-C6 alkenyloxy, C3-C6 haloalkenyloxy, C₃-C₆ alkynyloxy, C₃-C₆ cycloalkoxy, C₃-C₆ halo-40 cycloalkoxy, C₁-C₆ alkylthio, C₁-C₆ haloalkylthio, C₁-C₆ alkylsulfinyl, C_1 - C_6 haloalkylsulfinyl, C_1 - C_6 alkylsulfonyl and C₁-C₆ haloalkylsulfonyl;

p and q are each 0;

 R^{5dt} is G^{14} wherein $R^{37'}$, $R^{38'}$, $R^{39'}$, $R^{40'}$, $R^{41'}$, $R^{42'}$, $R^{43'}$ and 45 R^{44'} are selected independently of each other from the group consisting of methyl, ethyl, F and CF₃;

R⁴⁵', R⁴⁶', R⁴⁷', R⁴⁸' and R⁴⁹' are selected, independently of each other, from the group consisting of hydrogen, halogen, CN, NO₂, OH, SH, CHO, C(=O)NH₂, C(=O)NH(CH₃), 50 $\begin{array}{c} C_1\text{-}C_6 \text{ haloalkyl, } C_3\text{-}C_6 \text{ cycloalkyl, } C_2\text{-}C_6 \text{ alkenyl, } C_2\text{-}C_6 \\ \text{haloalkenyl, } C_2\text{-}C_6 \text{ alkynyl, } C_2\text{-}C_6 \text{ haloalkynyl, } C_1\text{-}C_6 \\ \text{alkoxy, } C_1\text{-}C_6 \text{ haloalkoxy, } C_3\text{-}C_6 \text{ alkenyloxy, } C_3\text{-}C_6 \text{ haloalk-} \end{array}$ enyloxy, $\mathrm{C_3\text{-}C_6}$ alkynyloxy, $\mathrm{C_3\text{-}C_6}$ cycloalkoxy, $\mathrm{C_3\text{-}C_6}$ halocycloalkoxy, C₁-C₆ alkylthio, C₁-C₆ haloalkylthio, C₁-C₆ alkylsulfinyl, C₁-C₆ haloalkylsulfinyl, C₁-C₆ alkylsulfonyl and C₁-C₆ haloalkylsulfonyl;

p and q are each 0; R^{5du} is G^{14} wherein $R^{37'}$, $R^{38'}$, $R^{39'}$, $R^{40'}$, $R^{41'}$, $R^{42'}$, $R^{43'}$ and R^{44'} are each hydrogen;

R⁴⁵', R⁴⁶', R⁴⁷', R⁴⁸' and R⁴⁹' are selected, independently of each other, from the group consisting of hydrogen, halogen, CN, NO₂, OH, SH, CHO, C(=O)NH₂, C(=O)NH(CH₃), 65 $C(=O)N(CH_3)_2$, $C(=S)NH_2$, $C(=S)NH(CH_3)$, C(=S)N(CH₃)₂, SO₂NH₂, SO₂NH(CH₃), SO₂N(CH₃)₂, C₁-C₆ alkyl,

C1-C6 haloalkyl, C3-C6 cycloalkyl, C2-C6 alkenyl, C2-C6 haloalkenyl, C2-C6 alkynyl, C2-C6 haloalkynyl, C1-C6 alkoxy, C_1 - C_6 haloalkoxy, C_3 - C_6 alkenyloxy, C_3 - C_6 haloalkenyloxy, C₃-C₆ alkynyloxy, C₃-C₆ cycloalkoxy, C₃-C₆ halocycloalkoxy, C₁-C₆ alkylthio, C₁-C₆ haloalkylthio, C₁-C₆ alkylsulfinyl, C_1 - C_6 haloalkylsulfinyl, C_1 - C_6 alkylsulfonyl and C₁-C₆ haloalkylsulfonyl;

p and q are each 0;

 R^{5dv} is G^{14} wherein $R^{37'}$ is selected from the group consisting of hydrogen, halogen, cyano, C₁-C₄ alkyl and C₁-C₄

 $R^{38'}$, $R^{39'}$, $R^{40'}$, $R^{41'}$, $R^{42'}$, $R^{43'}$ and $R^{44'}$ are each hydrogen; $R^{45^{\prime}}, R^{46^{\prime}}, R^{47^{\prime}}, R^{48^{\prime}}$ and $R^{49^{\prime}}$ are selected, independently of each other, from the group consisting of hydrogen, halogen, $CN, NO_2, OH, SH, CHO, C(=O)NH_2, C(=O)NH(CH_3),$ $C(=O)N(CH_3)_2$, $C(=S)NH_2$, $C(=S)NH(CH_3)$, C(=S)N(CH₃)₂, SO₂NH₂, SO₂NH(CH₃), SO₂N(CH₃)₂, C₁-C₆ alkyl, C₁-C₆ haloalkyl, C₃-C₆ cycloalkyl, C₂-C₆ alkenyl, C₂-C₆ haloalkenyl, C₂-C₆ alkynyl, C₂-C₆ haloalkynyl, C₁-C₆ alkoxy, C₁-C₆ haloalkoxy, C₃-C₆ alkenyloxy, C₃-C₆ haloalkenyloxy, C₃-C₆ alkynyloxy, C₃-C₆ cycloalkoxy, C₃-C₆ halocycloalkoxy, C_1 - C_6 alkylthio, C_1 - C_6 haloalkylthio, C_1 - C_6 alkylsulfinyl, C_1 - C_6 haloalkylsulfinyl, C_1 - C_6 alkylsulfonyl and C₁-C₆ haloalkylsulfonyl;

p and q are each 0;

R^{5dw} is G¹⁴ wherein R³⁷ and R³⁷ are selected independently of each other from the group consisting of hydrogen, halogen, cyano, C_1 - C_4 alkyl and C_1 - C_4 haloalkyl; $R^{39'}$, $R^{40'}$, $R^{41'}$, $R^{42'}$, $R^{43'}$ and $R^{44'}$ are selected independent

dently of each other from the group consisting of hydrogen, halogen, hydroxy, cyano, C₁-C₄ alkyl, C₁-C₄ haloalkyl, $C_1\text{-}C_4$ alkoxy, $C_1\text{-}C_4$ haloalkoxy and $C_1\text{-}C_4$ alkylthio; $R^{45'}, R^{46'}, R^{47'}, R^{48'}$ and $R^{49'}$ are selected, independently of

each other, from the group consisting of hydrogen, F, Cl, Br, I, methyl, ethyl, isopropyl, cyclopropyl, C=CH, CH=CH₂, C(CH₃)=CH₂, CF₃, CHF₂, CH₂F, —CHF—CH₃, —CF₂ CH₃, methoxy, trifluoromethoxy, ethoxy, methlythio, methylsulfinyl and methylsulfonyl;

p and q are each 0;

 R^{5dx} is G^{14} wherein $R^{37'}$, $R^{38'}$, $R^{39'}$, $R^{40'}$, $R^{41'}$, $R^{42'}$, $R^{43'}$ and R^{44'} are selected independently of each other from the group consisting of hydrogen, halogen, methyl, ethyl, isopropyl, monofluoromethyl, polyfluoromethyl, monofluoroethyl and polyfluoroethyl;

 $R^{45'}$, $R^{46'}$, $R^{47'}$, $R^{48'}$ and $R^{49'}$ are selected, independently of each other, from the group consisting of hydrogen, F. Cl. Br. I, methyl, ethyl, isopropyl, cyclopropyl, C=CH, CH=CH₂, C(CH₃)=CH₂, CF₃, CHF₂, CH₂F, —CHF—CH₃, —CF₂ CH₃, methoxy, trifluoromethoxy, ethoxy, methlythio, methylsulfinyl and methylsulfonyl;

p and q are each 0;

 R^{5ea} is G^{14} wherein $R^{37'}$, $R^{38'}$, $R^{39'}$, $R^{40'}$, $R^{41'}$, $R^{42'}$, $R^{43'}$ and R^{44'} are selected independently of each other from the group consisting of hydrogen, fluorine, methyl, ethyl, isopropyl, CH₂F, CHF₂, CF₃, CHF—CH₃, CF₂—CH₃, CH₂—CH₂F CH₂—CHF₂ and CH₂—CF₃;

 $R^{45'}$, $R^{46'}$, $R^{47'}$, $R^{48'}$ and $R^{49'}$ are selected, independently of each other, from the group consisting of hydrogen, F, Cl, Br, 60 I, methyl, ethyl, isopropyl, cyclopropyl, C = CH, $CH = CH_2$, $C(CH_3)$ = CH_2 , CF_3 , CHF_2 , CH_2F , —CHF— CH_3 , — CF_2 CH₃, methoxy, trifluoromethoxy, ethoxy, methlythio, methylsulfinyl and methylsulfonyl;

p and q are each 0;

 R^{eb} is G^{14} wherein $R^{37'}$, $R^{38'}$, $R^{39'}$, $R^{40'}$, $R^{41'}$, $R^{42'}$, $R^{43'}$ and R44' are selected independently from each other from the group consisting of methyl, ethyl, F and CF₃;

R^{45'}, R^{46'}, R^{47'}, R^{48'} and R^{49'} are selected, independently of each other, from the group consisting of hydrogen, F, Cl, Br, I, methyl, ethyl, isopropyl, cyclopropyl, C=CH, CH=CH₂, C(CH₃)=CH₂, CF₃, CHF₂, CH₂F, —CHF—CH₃, —CF₂ CH₃, methoxy, trifluoromethoxy, ethoxy, methlythio, methvlsulfinvl and methylsulfonvl:

p and q are each 0;

 R^{5ec} is G^{14} wherein $R^{37'}$, $R^{38'}$, $R^{39'}$, $R^{40'}$, $R^{41'}$, $R^{42'}$, $R^{43'}$ and R^{44'} are each hydrogen;

R^{45'}, R^{46'}, R^{47'}, R^{48'} and R^{49'} are selected, independently of each other, from the group consisting of hydrogen, F, Cl, Br, I, methyl, ethyl, isopropyl, cyclopropyl, C=CH, CH=CH₂, C(CH₃)=CH₂, CF₃, CHF₂, CH₂F, -CHF-CH₃, -CF₂ylsulfinyl and methylsulfonyl;

p and q are each 0;

R^{5ed} is G¹⁴ wherein R³⁷ is selected from the group consisting of hydrogen, halogen, cyano, C₁-C₄ alkyl and C₁-C₄

R^{38'}, R^{39'}, R^{40'}, R^{41'}, R^{42'}, R^{43'} and R^{44'} are each hydrogen; R⁴⁵', R⁴⁶', R⁴⁷', R⁴⁸' and R⁴⁹' are selected, independently of each other, from the group consisting of hydrogen, F, Cl, Br, I, methyl, ethyl, isopropyl, cyclopropyl, C=CH, CH=CH $_2$, C(CH₃)=CH₂, CF₃, CHF₂, CH₂F, -CHF-CH₃, -CF₂-CH₃, methoxy, trifluoromethoxy, ethoxy, methlythio, methylsulfinyl and methylsulfonyl;

p and q are each 0;

R^{5ef} is G¹⁴ wherein R³⁷ and R³⁸ are selected independently of each other from the group consisting of hydrogen, halogen, cyano, C_1 - C_4 alkyl and C_1 - C_4 haloalkyl; $R^{39'},\,R^{40'},\,R^{41'},\,R^{42'},\,R^{43'}$ and $R^{44'}$ are selected independent

dently of each other from the group consisting of hydrogen, halogen, hydroxy, cyano, C_1 - C_4 alkyl, C_1 - C_4 haloalkyl, $_{35}$ C_1 - C_4 alkoxy, C_1 - C_4 haloalkoxy and C_1 - C_4 alkylthio; $R^{45'}, R^{46'}, R^{47'}, R^{48'}$ and $R^{49'}$ are selected, independently of

each other, from the group consisting of hydrogen, F, Cl, methyl, CF₃, CHF₂, CH₂F, methoxy and trifluoromethoxy; p and q are each 0;

 R^{5eg} is G^{14} wherein $R^{37'}$, $R^{38'}$, $R^{39'}$, $R^{40'}$, $R^{41'}$, $R^{42'}$, $R^{43'}$ and R^{44'} are selected independently of each other from the group consisting of hydrogen, halogen, methyl, ethyl, isopropyl, monofluoromethyl, polyfluoromethyl, monofluoroethyl and polyfluoroethyl;

 $R^{45'}$, $R^{46'}$, $R^{47'}$, $R^{48'}$ and $R^{49'}$ are selected, independently of each other, from the group consisting of hydrogen, F. Cl. methyl, CF₃, CHF₂, CH₂F, methoxy and trifluoromethoxy;

p and q are each 0;

 R^{5eh} is G^{14} wherein $R^{37'}$, $R^{38'}$, $R^{39'}$, $R^{40'}$, $R^{41'}$, $R^{42'}$, $R^{43'}$ and 50 R^{44'} are selected independently of each other from the group consisting of hydrogen, fluorine, methyl, ethyl, isopropyl, CH₂F, CHF₂, CF₃, CHF—CH₃, CF₂—CH₃, CH₂—CH₂F CH₂—CHF₂ and CH₂—CF₃

each other, from the group consisting of hydrogen, F, Cl, methyl, CF₃, CHF₂, CH₂F, methoxy and trifluoromethoxy;

p and q are each 0;

 \hat{R}^{5ei} is \hat{G}^{14} wherein $R^{37'}$, $R^{38'}$, $R^{39'}$, $R^{40'}$, $R^{41'}$, $R^{42'}$, $R^{43'}$ and R^{44'} are selected independently of each other from the group 60 consisting of methyl, ethyl, F and CF₃;

 $R^{45'}$, $R^{46'}$, $R^{47'}$, $R^{48'}$ and $R^{49'}$ are selected, independently of each other, from the group consisting of hydrogen, F, Cl, methyl, CF₃, CHF₂, CH₂F, methoxy and trifluoromethoxy; p and q are each 0;

 R^{5ej} is G^{14} wherein $R^{37'}$, $R^{38'}$, $R^{39'}$, $R^{40'}$, $R^{41'}$, $R^{42'}$, $R^{43'}$ and R^{44'} are each hydrogen;

R^{45'}, R^{46'}, R^{47'}, R^{48'} and R^{49'} are selected, independently of each other, from the group consisting of hydrogen, F, Cl, methyl, CF₃, CHF₂, CH₂F, methoxy and trifluoromethoxy; p and q are each 0;

 R^{5ek} is G^{14} wherein R^{37} is selected from the group consisting of hydrogen, halogen, cyano, C1-C4 alkyl and C1-C4

haloalkyl; R^{38'}, R^{39'}, R^{40'}, R^{41'}, R^{42'}, R^{43'} and R^{44'} are each hydrogen; $R^{45'}$, $R^{46'}$, $R^{47'}$, $R^{48'}$ and $R^{49'}$ are selected, independently of each other, from the group consisting of hydrogen, F, Cl, methyl, CF₃, CHF₂, CH₂F, methoxy and trifluoromethoxy;

p is 0;

R^{5el} is G¹⁴ wherein R³⁷ and R³⁸ are selected indepen-CH₃, methoxy, trifluoromethoxy, ethoxy, methlythio, meth- 15 dently of each other from the group consisting of hydrogen, halogen, cyano, C_1 - C_4 alkyl and C_1 - C_4 haloalkyl; $R^{39'}$, $R^{40'}$, $R^{41'}$, $R^{42'}$, $R^{43'}$ and $R^{44'}$ are selected independent

dently of each other from the group consisting of hydrogen, halogen, hydroxy, cyano, C₁-C₄ alkyl, C₁-C₄ haloalkyl, C_1 - C_4 alkoxy, C_1 - C_4 haloalkoxy and C_1 - C_4 alkylthio; $R^{45'}$, $R^{46'}$, $R^{47'}$, $R^{48'}$ and $R^{49'}$ are selected, independently of

each other, from the group consisting of hydrogen, halogen, CN, NO₂, OH, SH, CHO, C(=O)NH₂, C(=O)NH(CH₃), $C(=O)N(CH_3)_2$, $C(=S)NH_2$, $C(=S)NH(CH_3)$, C(=S)N(CH₃)₂, SO₂NH₂, SO₂NH(CH₃), SO₂N(CH₃)₂, C₁-C₆ alkyl, C_1 - C_6 haloalkyl, C_3 - C_6 cycloalkyl, C_2 - C_6 alkenyl, C_2 - C_6 haloalkenyl, C_2 - C_6 alkynyl, C_2 - C_6 haloalkynyl, C_1 - C_6 alkoxy, C₁-C₆ haloalkoxy, C₃-C₆ alkenyloxy, C₃-C₆ haloalkenyloxy, $\mathrm{C_3\text{-}C_6}$ alkynyloxy, $\mathrm{C_3\text{-}C_6}$ cycloalkoxy, $\mathrm{C_3\text{-}C_6}$ halocycloalkoxy, C₁-C₆ alkylthio, C₁-C₆ haloalkylthio, C₁-C₆ alkylsulfinyl, C_1 - C_6 haloalkylsulfinyl, C_1 - C_6 alkylsulfonyl and C₁-C₆ haloalkylsulfonyl;

p is 0;

 R^{5em} is G^{14} wherein $R^{37'}$, $R^{38'}$, $R^{39'}$, $R^{40'}$, $R^{41'}$, $R^{42'}$, $R^{43'}$ and $R^{44^{\prime}}$ are selected independently of each other from the group consisting of hydrogen, halogen, methyl, ethyl, isopropyl, monofluoromethyl, polyfluoromethyl, monofluoroethyl and polyfluoroethyl;

 $\mathring{R}^{45'}$, $\mathring{R}^{46'}$, $\mathring{R}^{47'}$, $\mathring{R}^{48'}$ and $\mathring{R}^{49'}$ are selected, independently of each other, from the group consisting of hydrogen, halogen, CN, NO₂, OH, SH, CHO, C(=O)NH₂, C(=O)NH(CH₃), $C(=O)N(CH_3)_2$, $C(=S)NH_2$, $C(=S)NH(CH_3)$, C(=S)N(CH₃)₂, SO₂NH₂, SO₂NH(CH₃), SO₂N(CH₃)₂, C₁-C₆ alkyl, C₁-C₆ haloalkyl, C₃-C₆ cycloalkyl, C₂-C₆ alkenyl, C₂-C₆ haloalkenyl, C₂-C₆ alkynyl, C₂-C₆ haloalkynyl, C₁-C₆ alkoxy, C₁-C₆ haloalkoxy, C₃-C₆ alkenyloxy, C₃-C₆ haloalkenyloxy, C₃-C₆ alkynyloxy, C₃-C₆ cycloalkoxy, C₃-C₆ halocycloalkoxy, C_1 - C_6 alkylthio, C_1 - C_6 haloalkylthio, C_1 - C_6 alkylsulfinyl, C₁-C₆ haloalkylsulfinyl, C₁-C₆ alkylsulfonyl and C₁-C₆ haloalkylsulfonyl;

p is 0;

 R^{5en} is G^{14} wherein $R^{37'}$, $R^{38'}$, $R^{39'}$, $R^{40'}$, $R^{41'}$, $R^{42'}$, $R^{43'}$ and $R^{45'}$, $R^{46'}$, $R^{47'}$, $R^{48'}$ and $R^{49'}$ are selected, independently of 55 $R^{44'}$ are selected independently of each other from the group consisting of hydrogen, fluorine, methyl, ethyl, isopropyl, CH₂F, CHF₂, CF₃, CHF—CH₃, CF₂—CH₃, CH₂—CH₂F CH₂—CHF₂ and CH₂—CF₃;

 $R^{45'}$, $R^{46'}$, $R^{47'}$, $R^{48'}$ and $R^{49'}$ are selected, independently of each other, from the group consisting of hydrogen, halogen, CN, NO₂, OH, SH, CHO, C(=O)NH₂, C(=O)NH(CH₃), $C(=O)N(CH_3)_2$, $C(=S)NH_2$, $C(=S)NH(CH_3)$, C(=S)N(CH₃)₂, SO₂NH₂, SO₂NH(CH₃), SO₂N(CH₃)₂, C₁-C₆ alkyl, C₁-C₆ haloalkyl, C₃-C₆ cycloalkyl, C₂-C₆ alkenyl, C₂-C₆ haloalkenyl, C₂-C₆ alkynyl, C₂-C₆ haloalkynyl, C₁-C₆ alkoxy, C₁-C₆ haloalkoxy, C₃-C₆ alkenyloxy, C₃-C₆ haloalkenyloxy, C₃-C₆ alkynyloxy, C₃-C₆ cycloalkoxy, C₃-C₆ halocycloalkoxy, C_1 - C_6 alkylthio, C_1 - C_6 haloalkylthio, C_1 - C_6 alkylsulfinyl, C_1 - C_6 haloalkylsulfinyl, C_1 - C_6 alkylsulfonyl and C₁-C₆ haloalkylsulfonyl;

p is 0;

 R^{5eo} is G^{14} wherein $R^{37'}$, $R^{38'}$, $R^{39'}$, $R^{40'}$, $R^{41'}$, $R^{42'}$, $R^{43'}$ and R⁴⁴ are independently selected of each other from the group

consisting of methyl, ethyl, F and CF₃; $R^{45'}$, $R^{46'}$, $R^{47'}$, $R^{48'}$ and $R^{49'}$ are selected, independently of each other, from the group consisting of hydrogen, halogen, 10 CN, NO₂, OH, SH, CHO, C(=O)NH₂, C(=O)NH(CH₃), $C(=O)N(CH_3)_2$, $C(=S)NH_2$, $C(=S)NH(CH_3)$, C(=S)N(CH₃)₂, SO₂NH₂, SO₂NH(CH₃), SO₂N(CH₃)₂, C₁-C₆ alkyl, C₁-C₆ haloalkyl, C₃-C₆ cycloalkyl, C₂-C₆ alkenyl, C₂-C₆ haloalkenyl, C₂-C₆ alkynyl, C₂-C₆ haloalkynyl, C₁-C₆ alkoxy, $\mathrm{C_1\text{-}C_6}$ haloalkoxy, $\mathrm{C_3\text{-}C_6}$ alkenyloxy, $\mathrm{C_3\text{-}C_6}$ haloalkenyloxy, C_3 - C_6 alkynyloxy, C_3 - C_6 cycloalkoxy, C_3 - C_6 halocycloalkoxy, C_1 - C_6 alkylthio, C_1 - C_6 haloalkylthio, C_1 - C_6 alkylsulfinyl, C₁-C₆ haloalkylsulfinyl, C₁-C₆ alkylsulfonyl and C₁-C₆ haloalkylsulfonyl;

q is 1;

R^{5ep} is G¹⁴ wherein R³⁷, R³⁸, R³⁹, R⁴⁰, R⁴¹, R⁴², R⁴³ and

R^{44'} are each hydrogen;

 $R^{45'}$, $R^{46'}$, $R^{47'}$, $R^{48'}$ and $R^{49'}$ are selected, independently of 25 each other, from the group consisting of hydrogen, halogen, $CN, NO_2, OH, SH, CHO, C(=O)NH_2, C(=O)NH(CH_3),$ $C(=O)N(CH_3)_2$, $C(=S)NH_2$, $C(=S)NH(CH_3)$, C(=S)N(CH₃)₂, SO₂NH₂, SO₂NH(CH₃), SO₂N(CH₃)₂, C₁-C₆ alkyl, C₁-C₆ haloalkyl, C₃-C₆ cycloalkyl, C₂-C₆ alkenyl, C₂-C₆ 30 haloalkenyl, C₂-C₆ alkynyl, C₂-C₆ haloalkynyl, C₁-C₆ alkoxy, C1-C6 haloalkoxy, C3-C6 alkenyloxy, C3-C6 haloalkenyloxy, C_3 - C_6 alkynyloxy, C_3 - C_6 cycloalkoxy, C_3 - C_6 halocycloalkoxy, C_1 - C_6 alkylthio, C_1 - C_6 haloalkylsulfinyl, C_1 - C_6 alkylsulfinyl, C_1 - C_6 alkylsulfinyl, C_1 - C_6 alkylsulfonyl 35 and C₁-C₆ haloalkylsulfonyl;

p is 0:

R^{5eq} is G¹⁴ wherein R³⁷ is selected from the group consisthaloalkyl; $R^{38'}, R^{39'}, R^{40'}, R^{41'}, R^{42'}, R^{43'}$ and $R^{44'}$ are each hydrogen; $R^{45'}, R^{46'}, R^{47'}, R^{48'}$ and $R^{49'}$ are each hydrogen; ing of hydrogen, halogen, cyano, C₁-C₄ alkyl and C₁-C₄ 40

each other, from the group consisting of hydrogen, halogen, CN, NO₂, OH, SH, CHO, C(=O)NH₂, C(=O)NH(CH₃), 45 $C(=O)N(CH_3)_2$, $C(=S)NH_2$, $C(=S)NH(CH_3)$, C(=S)N(CH₃)₂, SO₂NH₂, SO₂NH(CH₃), SO₂N(CH₃)₂, C₁-C₆ alkyl, C₁-C₆ haloalkyl, C₃-C₆ cycloalkyl, C₂-C₆ alkenyl, C₂-C₆ haloalkenyl, C₂-C₆ alkynyl, C₂-C₆ haloalkynyl, C₁-C₆ alkoxy, C₁-C₆ haloalkoxy, C₃-C₆ alkenyloxy, C₃-C₆ haloalk- 50 enyloxy, C₃-C₆ alkynyloxy, C₃-C₆ cycloalkoxy, C₃-C₆ halocycloalkoxy, C₁-C₆ alkylthio, C₁-C₆ haloalkylthio, C₁-C₆ alkylsulfinyl, C₁-C₆ haloalkylsulfinyl, C₁-C₆ alkylsulfonyl and C_1 - C_6 haloalkylsulfonyl;

p is 0;

R^{5er} is G¹⁴ wherein R³⁷ and R³⁸ are selected independently of each other from the group consisting of hydrogen,

halogen, cyano, C_1 - C_4 alkyl and C_1 - C_4 haloalkyl; $R^{39'}, R^{40'}, R^{41'}, R^{42'}, R^{43'}$ and $R^{44'}$ are selected indepen- 60 dently of each other from the group consisting of hydrogen, halogen, hydroxy, cyano, C₁-C₄ alkyl, C₁-C₄ haloalkyl,

 C_1 - C_4 alkoxy, C_1 - C_4 haloalkoxy and C_1 - C_4 alkylthio; $R^{45'}$, $R^{46'}$, $R^{47'}$, $R^{48'}$ and $R^{49'}$ are selected, independently of each other, from the group consisting of hydrogen, F, Cl, Br, 65 I, methyl, ethyl, isopropyl, cyclopropyl, C=CH, CH=CH₂, C(CH₃)=CH₂, CF₃, CHF₂, CH₂F, --CHF--CH₃, --CF₂-

CH₃, methoxy, trifluoromethoxy, ethoxy, methlythio, methylsulfinyl and methylsulfonyl;

p is 0; q is 1:

R^{5es} is G¹⁴ wherein R³⁷, R³⁸, R³⁹, R⁴⁰, R⁴¹, R⁴², R⁴³ and R^{44'} are selected independently of each other from the group consisting of hydrogen, halogen, methyl, ethyl, isopropyl, monofluoromethyl, polyfluoromethyl, monofluoroethyl and

 $R^{45'}$, $R^{46'}$, $R^{47'}$, $R^{48'}$ and $R^{49'}$ are selected, independently of each other, from the group consisting of hydrogen, F, Cl, Br, I, methyl, ethyl, isopropyl, cyclopropyl, C=CH, CH=CH₂, C(CH₃)=CH₂, CF₃, CHF₂, CH₂F, -CHF-CH₃, -CF₂-CH₃, methoxy, trifluoromethoxy, ethoxy, methlythio, meth-

ylsulfinyl and methylsulfonyl;

p is 0;

R^{5et} is G¹⁴ wherein R³⁷, R³⁸, R³⁹, R⁴⁰, R⁴¹, R⁴², R⁴³ and 20 R^{44'} are selected independently of each other from the group consisting of hydrogen, fluorine, methyl, ethyl, isopropyl, CH₂F, CHF₂, CF₃, CHF—CH₃, CF₂—CH₃, CH₂—CH₂F CH₂—CHF₂ and CH₂—CF₃; $R^{45'}, R^{46'}, R^{47'}, R^{48'}$ and $R^{49'}$ are selected, independently of

each other, from the group consisting of hydrogen, F, Cl, Br, I, methyl, ethyl, isopropyl, cyclopropyl, C=CH, CH=CH₂, C(CH₃)=CH₂, CF₃, CHF₂, CH₂F, —CHF—CH₃, —CF₂-CH₃, methoxy, trifluoromethoxy, ethoxy, methlythio, methylsulfinyl and methylsulfonyl;

p is 0;

q is 1;

 $\bar{R}^{5\it{eu}}$ is G^{14} wherein $R^{37'}, R^{38'}, R^{39'}, R^{40'}, R^{41'}, R^{42'}, R^{43'}$ and R^{44'} are selected independently of each other from the group consisting of methyl, ethyl, F and CF $_3$; R^{45'}, R^{46'}, R^{47'}, R^{48'}, and R^{49'} are selected, independently of

each other, from the group consisting of hydrogen, F, Cl, Br, I, methyl, ethyl, isopropyl, cyclopropyl, C = CH, $CH = CH_2$, C(CH₃)=CH₂, CF₃, CHF₂, CH₂F, --CHF--CH₃, --CF₂-CH₃, methoxy, trifluoromethoxy, ethoxy, methlythio, methylsulfinyl and methylsulfonyl;

p is 0;

q is 1:

R^{5ev} is G¹⁴ wherein R³⁷′, R³⁸′, R³⁹′, R⁴⁰′, R⁴¹′, R⁴²′, R⁴³′ and R^{44'} are each hydrogen;

R^{45'}, R^{46'}, R^{47'}, R^{48'} and R^{49'} are selected independently of each other, from the group consisting of hydrogen, F, Cl, Br, I, methyl, ethyl, isopropyl, cyclopropyl, C=CH, CH=CH₂, C(CH₃)=CH₂, CF₃, CHF₂, CH₂F, --CHF--CH₃, --CF₂ CH₃, methoxy, trifluoromethoxy, ethoxy, methlythio, methylsulfinyl and methylsulfonyl;

p is 0:

R^{5ex} is G¹⁴ wherein R³⁷ is selected from the group consisting of hydrogen, halogen, cyano, C₁-C₄ alkyl and C₁-C₄

R^{38'}, R^{39'}, R^{40'}, R^{41'}, R^{42'}, R^{43'} and R^{44'} are each hydrogen; R^{45'}, R^{46'}, R^{47'}, R^{48'} and R^{49'} selected, independently of each other, from the group consisting of hydrogen, F, Cl, Br, I, methyl, ethyl, isopropyl, cyclopropyl, C=CH, CH=CH₂, C(CH₃)=CH₂, CF₃, CHF₂, CH₂F, —CHF—CH₃, —CF₂ CH₃, methoxy, trifluoromethoxy, ethoxy, methlythio, methylsulfinyl and methylsulfonyl;

p is 0;

q is 1;

R^{5ey} is G¹⁴ wherein R³⁷ and R³⁸ are selected independently of each other from the group consisting of hydrogen, halogen, cyano, C₁-C₄ alkyl and C₁-C₄ haloalkyl;

R^{39'}, R^{40'}, R^{41'}, R^{42'}, R^{43'} and R^{44'} are selected independently of each other from the group consisting of hydrogen, halogen, hydroxy, cyano, C₁-C₄ alkyl, C₁-C₄ haloalkyl, C₁-C₄ alkoxy, C₁-C₄ haloalkoxy and C₁-C₄ alkylthio;

 $^{\prime}$, $R^{46'}$, $R^{47'}$, $R^{48'}$ and $R^{49'}$ are selected, independently of 5 each other, from the group consisting of hydrogen, F, Cl, methyl, CF₃, CHF₂, CH₂F, methoxy and trifluoromethoxy;

p is 0; q is 1;

 \hat{R}^{5ez} is G^{14} wherein $R^{37'}$, $R^{38'}$, $R^{39'}$, $R^{40'}$, $R^{41'}$, $R^{42'}$, $R^{43'}$ and 10 R^{44'} are selected independently of each other from the group consisting of hydrogen, halogen, methyl, ethyl, isopropyl, monofluoromethyl, polyfluoromethyl, monofluoroethyl and polyfluoromethyl;

 $\mathring{R}^{45'}, R^{46'}, R^{47'}, \overset{'}{R}^{48'}$ and $R^{49'}$ are selected, independently of 15 each other, from the group consisting of hydrogen, F, Cl, methyl, CF₃, CHF₂, CH₂F, methoxy and trifluoromethoxy;

p is 0;

 R^{5fa} is G^{14} wherein $R^{37'}$, $R^{38'}$, $R^{39'}$, $R^{40'}$, $R^{41'}$, $R^{42'}$, $R^{43'}$ and 20 R^{44'} are selected independently of each other from the group consisting of hydrogen, fluorine, methyl, ethyl, isopropyl, CH₂F, CHF₂, CF₃, CHF—CH₃, CF₂—CH₃, CH₂—CH₂F

CH₂—CHF₂ and CH₂—CF₃; $R^{45'}, R^{46'}, R^{47'}, R^{48'}$ and $R^{49'}$ are selected, independently of 25 each other, from the group consisting of hydrogen, F, Cl, methyl, CF₃, CHF₂, CH₂F, methoxy and trifluoromethoxy;

p is 0;

q is 1; R^{5fb} is G^{14} wherein $R^{37'}$, $R^{38'}$, $R^{39'}$, $R^{40'}$, $R^{41'}$, $R^{42'}$, $R^{43'}$ and 30 R^{44'} are selected independently of each other from the group

consisting of methyl, ethyl, F and CF₃; R^{45'}, R^{46'}, R^{47'}, R^{48'} and R^{49'} are selected, independently of each other, from the group consisting of hydrogen, F, Cl,

p is 0;

q is 1:

 R^{5fc} is G^{14} wherein $R^{37'}$, $R^{38'}$, $R^{39'}$, $R^{40'}$, $R^{41'}$, $R^{42'}$, $R^{43'}$ and R44' are each hydrogen;

R⁴⁵', R⁴⁶', R⁴⁷', R⁴⁸' and R⁴⁹' are selected, independently of 40 each other, from the group consisting of hydrogen, F, Cl, methyl, CF₃, CHF₂, CH₂F, methoxy and trifluoromethoxy;

p is 0;

 R^{5fd} is G^{14} wherein $R^{37'}$ is selected from the group consisting of hydrogen, halogen, cyano, C₁-C₄ alkyl and C₁-C₄ haloalkyl;

 $R^{38'}$, $R^{39'}$, $R^{40'}$, $R^{41'}$, $R^{42'}$, $R^{43'}$ and $R^{44'}$ are each hydrogen; R⁴⁵′, R⁴⁶′, R⁴⁷′, R⁴⁸′ and R⁴⁹′ are selected, independently of each other, from the group consisting of hydrogen, F, Cl, 50 methyl, CF₃, CHF₂, CH₂F, methoxy and trifluoromethoxy;

p is 0;

R^{5fe} is G¹⁴ wherein R^{37'} and R^{38'} are selected independently of each other from the group consisting of hydrogen, 55

halogen, cyano, C_1 - C_4 alkyl and C_1 - C_4 haloalkyl; $R^{39'},\,R^{40'},\,R^{41'},\,R^{42'},\,R^{43'}$ and $R^{44'}$ are selected independent dently of each other from the group consisting of hydrogen, halogen, hydroxy, cyano, C₁-C₄ alkyl, C₁-C₄ haloalkyl, $C_1\text{-}C_4$ alkoxy, $C_1\text{-}C_4$ haloalkoxy and $C_1\text{-}C_4$ alkylthio; $R^{45'}, R^{46'}, R^{47'}, R^{48'}$ and $R^{49'}$ are selected, independently of

each other, from the group consisting of hydrogen, halogen, $CN, NO_2, OH, SH, CHO, C(=O)NH_2, C(=O)NH(CH_3),$ $C(=O)N(CH_3)_2$, $C(=S)NH_2$, $C(=S)NH(CH_3)$, C(=S)N(CH₃)₂, SO₂NH₂, SO₂NH(CH₃), SO₂N(CH₃)₂, C₁-C₆ alkyl, 65 C₁-C₆ haloalkyl, C₃-C₆ cycloalkyl, C₂-C₆ alkenyl, C₂-C₆ haloalkenyl, C₂-C₆ alkynyl, C₂-C₆ haloalkynyl, C₁-C₆

alkoxy, C_1 - C_6 haloalkoxy, C_3 - C_6 alkenyloxy, C_3 - C_6 haloalkenyloxy, C₃-C₆ alkynyloxy, C₃-C₆ cycloalkoxy, C₃-C₆ halocycloalkoxy, C₁-C₆ alkylthio, C₁-C₆ haloalkylthio, C₁-C₆ alkylsulfinyl, C_1 - C_6 haloalkylsulfinyl, C_1 - C_6 alkylsulfonyl and C₁-C₆ haloalkylsulfonyl;

p is 1; q is 1;

 \hat{R}^{5fg} is G^{14} wherein $R^{37'}$, $R^{38'}$, $R^{39'}$, $R^{40'}$, $R^{41'}$, $R^{42'}$, $R^{43'}$ and R^{44'} are selected independently of each other from the group consisting of hydrogen, halogen, methyl, ethyl, isopropyl, monofluoromethyl, polyfluoromethyl, monofluoroethyl and polyfluoroethyl;

 $R^{45'}$, $R^{46'}$, $R^{47'}$, $R^{48'}$ and $R^{49'}$ are selected, independently of each other, from the group consisting of hydrogen, halogen, CN, NO₂, OH, SH, CHO, C(=O)NH₂, C(=O)NH(CH₃), $C(=O)N(CH_3)_2$, $C(=S)NH_2$, $C(=S)NH(CH_3)$, C(=S)N $(CH_3)_2$, SO_2NH_2 , $SO_2NH(CH_3)$, $SO_2N(CH_3)_2$, C_1 - C_6 alkyl, C₁-C₆ haloalkyl, C₃-C₆ cycloalkyl, C₂-C₆ alkenyl, C₂-C₆ haloalkenyl, C₂-C₆ alkynyl, C₂-C₆ haloalkynyl, C₁-C₆ alkoxy, C₁-C₆ haloalkoxy, C₃-C₆ alkenyloxy, C₃-C₆ haloalkenyloxy, C₃-C₆ alkynyloxy, C₃-C₆ cycloalkoxy, C₃-C₆ halocycloalkoxy, C1-C6 alkylthio, C1-C6 haloalkylthio, C1-C6 alkylsulfinyl, C₁-C₆ haloalkylsulfinyl, C₁-C₆ alkylsulfonyl and C₁-C₆ haloalkylsulfonyl;

p is 1;

 R^{5fh} is G^{14} wherein $R^{37'}$, $R^{38'}$, $R^{39'}$, $R^{40'}$, $R^{41'}$, $R^{42'}$, $R^{43'}$ and R⁴⁴ are selected independently of each other from the group consisting of hydrogen, fluorine, methyl, ethyl, isopropyl, CH₂F, CHF₂, CF₃, CHF—CH₃, CF₂—CH₃, CH₂—CH₂F CH₂—CHF₂ and CH₂—CF₃;

 $R^{45'}$, $R^{46'}$, $R^{47'}$, $R^{48'}$ and $R^{49'}$ are selected, independently of each other, from the group consisting of hydrogen, halogen, CN, NO₂, OH, SH, CHO, C(=O)NH₂, C(=O)NH(CH₃), methyl, CF₃, CHF₂, CH₃, methoxy and trifluoromethoxy; 35 $C(=O)N(CH_3)$, $C(=S)NH_2$, $C(=S)NH(CH_3)$, $C(=S)NH_3$ $(CH_3)_2$, SO_2NH_2 , $SO_2NH(CH_3)$, $SO_2N(CH_3)_2$, C_1 - C_6 alkyl, C₁-C₆ haloalkyl, C₃-C₆ cycloalkyl, C₂-C₆ alkenyl, C₂-C₆ haloalkenyl, C₂-C₆ alkynyl, C₂-C₆ haloalkynyl, C₁-C₆ alkoxy, C₁-C₆ haloalkoxy, C₃-C₆ alkenyloxy, C₃-C₆ haloalkenyloxy, $\rm C_3\text{-}C_6$ alkynyloxy, $\rm C_3\text{-}C_6$ cycloalkoxy, $\rm C_3\text{-}C_6$ halocycloalkoxy, C₁-C₆ alkylthio, C₁-C₆ haloalkylthio, C₁-C₆ alkylsulfinyl, C_1 - C_6 haloalkylsulfinyl, C_1 - C_6 alkylsulfonyl and C₁-C₆ haloalkylsulfonyl;

p is 1;

q is 1;

 R^{5fi} is G^{14} wherein $R^{37'}$, $R^{38'}$, $R^{39'}$, $R^{40'}$, $R^{41'}$, $R^{42'}$, $R^{43'}$ and R⁴⁴ are selected independently of each other from the group consisting of methyl, ethyl, F and CF₃;

R⁴⁵', R⁴⁶', R⁴⁷', R⁴⁸' and R⁴⁹' are selected, independently of each other, from the group consisting of hydrogen, halogen, CN, NO₂, OH, SH, CHO, C(=O)NH₂, C(=O)NH(CH₃), $C(=O)N(CH_3)_2$, $C(=S)NH_2$, $C(=S)NH(CH_3)$, $C(=S)N(CH_3)_2$, SO_2NH_2 , $SO_2NH(CH_3)$, $SO_2N(CH_3)_2$, C_1 - C_6 alkyl, $\begin{array}{c} C_1\text{-}C_6 \text{ haloalkyl, } C_3\text{-}C_6 \text{ cycloalkyl, } C_2\text{-}C_6 \text{ alkenyl, } C_2\text{-}C_6 \\ \text{haloalkenyl, } C_2\text{-}C_6 \text{ haloalkynyl, } C_2\text{-}C_6 \text{ haloalkynyl, } C_1\text{-}C_6 \end{array}$ alkoxy, C_1 - C_6 haloalkoxy, C_3 - C_6 alkenyloxy, C_3 - C_6 haloalkenyloxy, C₃-C₆ alkynyloxy, C₃-C₆ cycloalkoxy, C₃-C₆ halocycloalkoxy, C_1 - C_6 alkylthio, C_1 - C_6 haloalkylthio, C_1 - C_6 alkylsulfinyl, C₁-C₆ haloalkylsulfinyl, C₁-C₆ alkylsulfonyl 60 and C1-C6 haloalkylsulfonyl;

p is 1;

q is 1;

 R^{5f} is G^{14} wherein $R^{37'}$, $R^{38'}$, $R^{39'}$, $R^{40'}$, $R^{41'}$, $R^{42'}$, $R^{43'}$ and R44' are each hydrogen;

R^{45'}, R^{46'}, R^{47'}, R^{48'} and R^{49'} are selected, independently of each other, from the group consisting of hydrogen, halogen, CN, NO₂, OH, SH, CHO, C(\rightleftharpoons O)NH₂, C(\rightleftharpoons O)NH(CH₃),

C(=O)N(CH₃)₂, C(=S)NH₂, C(=S)NH(CH₃), C(=S)N (CH₃)₂, SO₂NH₂, SO₂NH(CH₃), SO₂N(CH₃)₂, C₁-C₆ alkyl, C₁-C₆ haloalkyl, C₃-C₆ cycloalkyl, C₂-C₆ alkenyl, C₂-C₆ haloalkenyl, C₂-C₆ alkynyl, C₂-C₆ haloalkynyl, C₁-C₆ alkoxy, C₁-C₆ haloalkoxy, C₃-C₆ alkenyloxy, C₃-C₆ haloalkenyloxy, C₃-C₆ alkynyloxy, C₃-C₆ cycloalkoxy, C₃-C₆ haloalkenyloxy, C₃-C₆ alkylthio, C₁-C₆ haloalkylthio, C₁-C₆ alkylsulfinyl, C₁-C₆ alkylsulfonyl and C₁-C₆ haloalkylsulfonyl;

p is 1;

 $R^{38'}, R^{39'}, R^{40'}, R^{41'}, R^{42'}, R^{43'}$ and $R^{44'}$ are each hydrogen; $R^{45'}, R^{46'}, R^{47'}, R^{48'}$ and $R^{49'}$ are selected, independently of each other, from the group consisting of hydrogen, halogen, $CN, NO_2, OH, SH, CHO, C(=O)NH_2, C(=O)NH(CH_3), C(=O)N(CH_3)_2, C(=S)NH_2, C(=S)NH(CH_3), C(=S)N 20 (CH_3)_2, SO_2NH_2, SO_2NH(CH_3), SO_2N(CH_3)_2, C_1-C_6 alkyl, C_1-C_6 haloalkyl, C_3-C_6 cycloalkyl, C_2-C_6 alkenyl, C_2-C_6 haloalkenyl, C_2-C_6 alkynyl, C_2-C_6 haloalkenyl, C_2-C_6 alkynyl, C_3-C_6 cycloalkoxy, C_3-C_6 haloalkenyl, C_3-C_6 alkynyl, C_3-C_6 cycloalkoxy, C_3-C_6 haloalkenyl, C_1-C_6 haloalkenyl, C_1-C_6 haloalkenyl, C_1-C_6 alkynyloxy, C_3-C_6 cycloalkoxy, C_3-C_6 haloalkenyloxy, C_3-C_6 haloalkenyloxy, C_3-C_6 haloalkyloxy, C_3-C_6 h$

p is 1; q is 1;

 R^{5fl} is G^{14} wherein $R^{37'}$ and $R^{38'}$ are selected independently of each other from the group consisting of hydrogen, halogen, cyano, C_1 - C_4 alkyl and C_1 - C_4 haloalkyl;

cyano, C_1 - C_4 alkyl and C_1 - C_4 haloalkyl; $R^{39'}$, $R^{40'}$, $R^{41'}$, $R^{42'}$, $R^{43'}$ and $R^{44'}$ are selected independently of each other from the group consisting of hydrogen, 35 halogen, hydroxy, cyano, C_1 - C_4 alkyl, C_1 - C_4 haloalkyl, C_4 - C_4 alkoxy, C_4 - C_4 haloalkoxy and C_4 - C_4 alkylthio:

C₁-C₄ alkoxy, C₁-C₄ haloalkoxy and C₁-C₄ alkylthio; R^{45'}, R^{46'}, R^{47'}, R^{48'} and R^{49'} are selected, independently of each other, from the group consisting of hydrogen, F, Cl, Br, I, methyl, ethyl, isopropyl, cyclopropyl, C=CH, CH=CH₂, 40 C(CH₃)=CH₂, CF₃, CHF₂, CH₂F, —CHF—CH₃, —CF₂—CH₃, methoxy, trifluoromethoxy, ethoxy, methlythio, methylsulfinyl and methylsulfonyl;

p is 1; q is 1;

 $R^{5\mathit{fm}}$ is G^{14} wherein $R^{37'}, R^{38'}, R^{39'}, R^{40'}, R^{41'}, R^{42'}, R^{43'}$ and $R^{44'}$ are selected independently of each other from the group consisting of hydrogen, halogen, methyl, ethyl, isopropyl, monofluoromethyl, polyfluoromethyl, monofluoroethyl and polyfluoroethyl; $R^{45'}, R^{46'}, R^{47'}, R^{48'} \text{ and } R^{49'} \text{ are selected, independently of}$

 $R^{45'}$, $R^{46'}$, $R^{47'}$, $R^{48'}$ and $R^{49'}$ are selected, independently of each other, from the group consisting of hydrogen, F, Cl, Br, I, methyl, ethyl, isopropyl, cyclopropyl, C = CH, $CH = CH_2$, $C(CH_3) = CH_2$, CF_3 , CHF_2 , CH_2F , $CHF = CH_3$, $CF_2 = CH_3$, methoxy, trifluoromethoxy, ethoxy, methlythio, methsylsulfinyl and methylsulfonyl;

p is 1;

R⁵fir is G¹⁴ wherein R³⁷', R³⁸', R³⁹', R⁴⁰', R⁴¹', R⁴²', R⁴³' and R⁴⁴' are selected independently of each other from the group 60 consisting of hydrogen, fluorine, methyl, ethyl, isopropyl, CH₂F, CHF₂, CF₃, CHF—CH₃, CF₂—CH₃, CH₂—CH₂F CH₂—CH₁² and CH₂—CF₃;

R^{45'}, R^{46'}, R^{47'}, R^{48'} and R^{49'} are selected, independently of each other, from the group consisting of hydrogen, F, Cl, Br, 65 I, methyl, ethyl, isopropyl, cyclopropyl, C=CH, CH=CH₂, C(CH₃)=CH₂, CF₃, CHF₂, CH₂F, —CHF—CH₃, —CF₂—

CH₃, methoxy, trifluoromethoxy, ethoxy, methlythio, methylsulfinyl and methylsulfonyl;

p is 1; q is 1;

R^{5/6} is G¹⁴ wherein R^{37'}, R^{38'}, R^{39'}, R^{40'}, R^{41'}, R^{42'}, R^{43'} and R^{44'} are selected independently of each other from the group consisting of methyl, ethyl, F and CF₅;

consisting of methyl, ethyl, F and CF_3 ; $R^{45'}$, $R^{46'}$, $R^{47'}$, $R^{48'}$ and $R^{49'}$ are selected, independently of each other, from the group consisting of hydrogen, F, Cl, Br, I, methyl, ethyl, isopropyl, cyclopropyl, C = CH, $CH = CH_2$, $C(CH_3) = CH_2$, CF_3 , CHF_2 , CH_2F , $CHF = CH_3$, $CF_2 = CH_3$, methoxy, trifluoromethoxy, ethoxy, methlythio, methylsulfinyl and methylsulfonyl;

p is 1; q is 1;

 $R^{5/p}$ is G^{14} wherein $R^{37'}$, $R^{38'}$, $R^{39'}$, $R^{40'}$, $R^{41'}$, $R^{41'}$, $R^{42'}$, $R^{43'}$ and $R^{44'}$ are each hydrogen;

R^{45'}, R^{46'}, R^{47'}, R^{48'} and R^{49'} are selected, independently of each other, from the group consisting of hydrogen, F, Cl, Br, I, methyl, ethyl, isopropyl, cyclopropyl, C=CH, CH=CH₂, C(CH₃)=CH₂, CF₃, CHF₂, CH₂F, —CHF—CH₃, —CF₂—

CH₃, methoxy, trifluoromethoxy, ethoxy, methlythio, methylsulfinyl and methylsulfonyl;

p is 1; q is 1;

 $R^{5/q}$ is G^{14} wherein $R^{37'}$ is selected from the group consisting of hydrogen, halogen, cyano, C_1 - C_4 alkyl and C_1 - C_4 haloalkyl;

 $R^{38'}$, $R^{39'}$, $R^{40'}$, $R^{41'}$, $R^{42'}$, $R^{43'}$ and $R^{44'}$ are hydrogen;

 R^{45} , R^{46} , R^{47} , R^{48} and R^{49} are selected, independently of each other, from the group consisting of hydrogen, F, Cl, Br, I, methyl, ethyl, isopropyl, cyclopropyl, C = CH, $CH = CH_2$, $C(CH_3) = CH_2$, CF_3 , CHF_2 , CH_2F , $CHF = CH_3$, $-CF_2 = CH_3$, methoxy, trifluoromethoxy, ethoxy, methlythio, methylsulfinyl and methylsulfonyl;

p is 1; q is 1;

 R^{5fr} is G^{14} wherein $R^{37'}$ and $R^{38'}$ are selected independently of each other from the group consisting of hydrogen, halogen, cyano, C_1 - C_4 alkyl and C_1 - C_4 haloalkyl;

R^{39'}, R^{40'}, R^{41'}, R^{42'}, R^{43'} and R^{44'} are selected independently of each other from the group consisting of hydrogen, halogen, hydroxy, cyano, C₁-C₄ alkyl, C₁-C₄ haloalkyl, C₁-C₄ alkoxy, C₁-C₄ haloalkoxy and C₁-C₄ alkylthio;

C₁-C₄ alkoxy, C₁-C₄ haloalkoxy and C₁-C₄ alkylthio;

R⁴⁵, R⁴⁶, R⁴⁷, R⁴⁸ and R⁴⁹ are selected, independently of each other, from the group consisting of hydrogen, F, Cl, methyl, CF₃, CHF₂, CH₃F, methoxy and trifluoromethoxy;

p is 1;

R^{5/s} is G¹⁴ wherein R^{37'}, R^{38'}, R^{39'}, R^{40'}, R^{41'}, R^{42'}, R^{43'} and R^{44'} are selected independently of each other from the group consisting of hydrogen, halogen, methyl, ethyl, isopropyl, monofluoromethyl, polyfluoromethyl, monofluoroethyl and polyfluoroethyl;

R^{45'}, R^{46'}, R^{47'}, R^{48'} and R^{49'} are selected, independently of each other, from the group consisting of hydrogen, F, Cl, methyl, CF₃, CHF₂, CH₂F, methoxy and trifluoromethoxy;

p is 1; a is 1:

R⁵f^{*} is G¹⁴ wherein R^{37'}, R^{38'}, R^{39'}, R^{40'}, R^{41'}, R^{42'}, R^{43'} and R^{44'} are selected independently of each other from the group consisting of hydrogen, fluorine, methyl, ethyl, isopropyl, CH₂F, CHF₂, CF₃, CHF—CH₃, CF₂—CH₃, CH₂—CH₂F CH₃—CH₅ and CH₂—CF₃;

R⁴⁵′, R⁴⁶′, R⁴⁷′, R⁴⁸′ and R⁴⁹′ are selected, independently of each other, from the group consisting of hydrogen, F, Cl, methyl, CF₃, CHF₂, CH₂F, methoxy and trifluoromethoxy;

			79			80						
p is 1;									TABLE	N-contin	ued	
q is 1; R ^{5fu} is	$ m G^{14}$ wher	ein R ³⁷ '. F	R ^{38'} . R ^{39'} . I	R ⁴⁰ '. R ⁴¹ '.	R ⁴² ', R ⁴³ ' and	-		R ₁	R ₃	R ₄	R ₅	R ₆
					om the group	-	N23	R^{1b}	R ^{3b}	R ^{4d}	R ^{5h}	R ^{6b}
consisting	g of meth	yl, ethyl,	F and CF	3;		5	N24	\mathbb{R}^{1b}	\mathbb{R}^{3c}	R^{4e}	R^{5h}	R^{6b}
					ependently of		N25	R^{1b} R^{1b}	R^{3a} R^{3b}	R^{4c} R^{4d}	R^{5j} R^{5j}	R^{6b} R^{6b}
					rogen, F, Cl,		N26 N27	R^{1b}	R^{3c}	R^{4e}	R^{5j}	R^{6b}
	F_3 , CHF	$_2$, CH $_2$ F, 1	methoxy a	and triffuo	romethoxy;		N28	R^{1b}	\mathbb{R}^{3d}	R^{4c}	R^{5k}	R^{6b}
p is 1;						10	N29 N30	R^{1b} R^{1b}	R^{3b} R^{3c}	${ m R}^{4d} \ { m R}^{4e}$	R^{5k} R^{5k}	${f R}^{6b}$ ${f R}^{6b}$
q is 1; R ^{5fv} is 0	G ¹⁴ wher	ein R ³⁷ E	2 ³⁸ ′ R ³⁹ ′ I	R ^{40'} R ^{41'}	R ⁴² ', R ⁴³ ' and	10	N31	R^{1b}	\mathbb{R}^{3d}	R^{4c}	\mathbb{R}^{5l}	R^{6b}
R ⁴⁴ are e			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	. , , ,	ix , ix and		N32	R^{1b}	R^{3b}	${ m R}^{4d}$ ${ m R}^{4e}$	R^{5l} R^{5l}	R^{6b} R^{6b}
R ⁴⁵ , R	$^{46'}$, $R^{47'}$, I	R ⁴⁸ and R	49' are sele	ected, inde	ependently of		N33 N34	R^{1b} R^{1b}	R^{3c} R^{3d}	R^{4c}	R^{5m}	R^{6b}
					rogen, F, Cl,		N35	R^{1b}	\mathbb{R}^{3b}	R^{4d}	R^{5m}	R^{6b}
	CF ₃ , CHF	$_2$, CH $_2$ F, $_1$	methoxy a	and trifluo	romethoxy;	15	N36 N37	${f R}^{1b} \ {f R}^{1b}$	R^{3c} R^{3d}	${ m R}^{4e} \ { m R}^{4c}$	R^{5m} R^{5n}	${f R}^{6b}$ ${f R}^{6b}$
p is 1;							N38	R^{1b}	R^{3b}	R^{4d}	R^{5n}	R^{6b}
q is 1;	C141-	D37'	1 4 . 3	1 € 1	drogen, halo-		N39	${ m R}^{1b} \ { m R}^{1b}$	R^{3c} R^{3d}	${ m R}^{4e}$ ${ m R}^{4c}$	R^{5n} R^{5o}	R^{6b} R^{6b}
							N40 N41	R^{1b}	R^{3b}	R^{4d}	R ⁵ 0	R^{6b}
R ^{38'} R	$^{39'}$ $R^{40'}$	R ⁴¹ ′ R ⁴² ′	$R^{43'}$ and	R ^{44'} are s	elected inde-	20	N42	R^{1b}	R^{3c}	R^{4e}	R ⁵⁰	R^{6b}
pendently	of each	other from	n the grou	ip consist	ing of hydro-	20	N43 N44	${f R}^{1b} \ {f R}^{1b}$	R^{3d} R^{3b}	${ m R}^{4c} \ { m R}^{4d}$	R^{5p} R^{5p}	R^{6b} R^{6b}
					CHF ₂ , CF ₃ ,		N45	R^{1b}	R^{3c}	R^{4e}	R^{5p}	R^{6b}
CHF—Cl	H_3 , CF_2	$-CH_3$,	CH_2 — CH	I ₂ F CH ₂ -	-CHF ₂ and		N46 N47	${f R}^{1b} \ {f R}^{1b}$	R^{3d} R^{3b}	${ m R}^{4c} \ { m R}^{4d}$	${ m R}^{5q} \ { m R}^{5q}$	R^{6b} R^{6b}
CH_2 — CH	3; 46! – 47! -	- 49!	40!		ependently of		N48	R^{1b}	\mathbb{R}^{3c}	R^{4e}	\mathbb{R}^{5q}	R^{6b}
R^{+3}, R	⁴⁰ , R ⁴⁷ , 1	R ⁺ ° and R	are sele	ected, inde	ependently of	25	N49	${f R}^{1b} \ {f R}^{1b}$	R^{3d} R^{3b}	${ m R}^{4c} \ { m R}^{4d}$	R^{5r}	R^{6b} R^{6b}
					rogen, F, Cl,		N50 N51	R^{1b}	R^{3c}	R™ R ^{4e}	R^{5r} R^{5r}	R^{6b}
p is 1;	Γ_3 , CHF	$_2$, C Π_2 Γ , 1	шешоху а	ina trinuo	romethoxy;		N52	R^{1b}	\mathbb{R}^{3d}	R^{4c}	\mathbb{R}^{5s}	R^{6b}
q is 1;							N53 N54	${ m R}^{1b} \ { m R}^{1b}$	R^{3b} R^{3c}	${ m R}^{4d} \ { m R}^{4e}$	R^{5s} R^{5s}	R^{6b} R^{6b}
	selected f	rom hydr	ogen and	SH;		30	N55	R^{1b}	\mathbb{R}^{3d}	R^{4c}	R^{5t}	R^{6b}
R^{6b} is 1	hydrogen	;	_				N56 N57	${ m R}^{1b} \ { m R}^{1b}$	R^{3b} R^{3c}	${ m R}^{4d} \ { m R}^{4e}$	R^{5t} R^{5t}	R^{6b} R^{6b}
R^{6c} is S							N58	R^{1b}	\mathbb{R}^{3d}	R^{4c}	R^{5u}	R^{6b}
					o-group from		N59	${ m R}^{1b}$ ${ m R}^{1b}$	R^{3b} R^{3c}	${ m R}^{4d} \ { m R}^{4e}$	R^{5u} R^{5u}	R^{6b} R^{6b}
					note that in R ₇ is always	25	N60 N61	R^{1b}	R^{3d}	R^{4c}	$R^{5\nu}$	R^{6b}
					oup of com-	33	N62	R^{1b}	R^{3b}	R^{4d}	R ^{5v}	R^{6b}
pounds of				11 15 4 51	oup or com		N63 N64	R^{1b} R^{1b}	R^{3c} R^{3d}	R^{4e} R^{4c}	$R^{5\nu}$ R^{5x}	R^{6b} R^{6b}
R_1 is R	1b ;						N65	R^{1b}	R^{3b}	R^{4d}	R^{5x}	R^{6b}
R_2 is m	nethyl;						N66 N67	R^{1b} R^{1b}	R^{3c} R^{3d}	R^{4e} R^{4c}	R ^{5x} R ^{5y}	R^{6b} R^{6b}
R_3 is R	3a. 4c					40	N68	R^{1b}	R^{3b}	R^{4d}	R^{5y}	R^{6b}
R ₄ is R	5a.						N69 N70	R^{1b} R^{1b}	R^{3c} R^{3d}	R^{4e} R^{4c}	R^{5y} R^{5z}	R^{6b} R^{6b}
R ₅ is R R ₆ is R	6b.						N71	R^{1b}	R^{3b}	R^{4d}	R^{5z}	R^{6b}
R_6 is R_7 is H							N72	R^{1b}	R^{3c}	R^{4e}	R^{5z}	R^{6b}
,						45	N73 N74	R^{1b} R^{1b}	R^{3a} R^{3b}	\mathbb{R}^{4d}	R^{5ab} R^{5ab}	R^{6b} R^{6b}
		TA	BLE N				N75	R^{1b}	R^{3c}	R ^{4e}	R 5ab	R^{6b}
	D	D	D	D	D.		N76 N77	R^{1b} R^{1b}	R^{3d} R^{3b}	R^{4c} R^{4d}	R ^{5ac} R ^{5ac}	R^{6b} R^{6b}
	R ₁	R ₃	R ₄	R ₅	R ₆		N78	R^{1b}	R^{3c}	R^{4e}	R^{5ac}	R^{6b}
N1 N2	R^{1b} R^{1b}	R^{3a} R^{3b}	R^{4c} R^{4d}	R ^{5a} R ^{5a}	${ m R}^{6b}$ ${ m R}^{6b}$	50	N79 N80	${f R}^{1b} \ {f R}^{1b}$	R^{3d} R^{3b}	${ m R}^{4c} \ { m R}^{4d}$	R ^{5ad} R ^{5ad}	R^{6b} R^{6b}
N3	R^{1b}	\mathbb{R}^{3c}	$R^{4\epsilon}$	R^{5a}	R^{6b}	30	N81	\mathbb{R}^{1b}	\mathbb{R}^{3c}	R^{4e}	R^{5ad}	R^{6b}
N4	R^{1b} R^{1b}	R^{3a} R^{3b}	R^{4c} R^{4d}	R^{5b} R^{5b}	R^{6b} R^{6b}		N82 N83	R^{1b} R^{1b}	R^{3e} R^{3f}	${ m R}^{4c} \ { m R}^{4c}$	${ m R}^{5bb} \ { m R}^{5bb}$	R^{6b} R^{6b}
N5 N6	R^{1b}	R^{3c}	R^{4e}	R^{5b}	R^{6b}		N84	R^{1b}	R^{3g}	R^{4e}	R^{5bb}	R^{6b}
N7	R ^{1b}	R^{3a}	R^{4c}	R^{5c}	R^{6b}		N85	${f R}^{1b} \ {f R}^{1b}$	R^{3h} R^{3e}	${ m R}^{4e} \ { m R}^{4c}$	R^{5bb} R^{5cc}	R^{6b} R^{6b}
N8 N9	R^{1b} R^{1b}	R^{3b} R^{3c}	R^{4d} R^{4e}	R^{5c} R^{5c}	R^{6b} R^{6b}	55	N86 N87	R^{1b}	R ³	R^{4c}	R ^{5cc}	R^{6b}
N10	R^{1b}	\mathbb{R}^{3a}	\mathbb{R}^{4c}	\mathbb{R}^{5d}	R^{6b}		N88	R^{1b}	R^{3g}	R^{4e}	R^{5cc}	R^{6b}
$egin{array}{cccccccccccccccccccccccccccccccccccc$					N89 N90	${f R}^{1b} \ {f R}^{1b}$	R^{3h} R^{3e}	${ m R}^{4e} \ { m R}^{4c}$	R^{5cc} R^{5dd}	${ m R}^{6b}$ ${ m R}^{6b}$		
N13	R^{1b}	R^{3a}	R^{4c}	R^{5e}	R^{6b}		N91	R^{1b}	R^{3f}	R^{4c}	R^{5dd}	R^{6b}
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					R^{6b}	60	N92 N93	${ m R}^{1b}$ ${ m R}^{1b}$	R^{3g} R^{3h}	R ⁴ € R ⁴ €	R ^{5dd} R ^{5dd}	R^{6b} R^{6b}
N15 N16	R^{1b}	R^{3a}	R^{4c}	R^{5f}	R^{6b}		N94	R^{1b}	\mathbb{R}^{3e}	R^{4c}	R^{5ee}	R^{6b}
R^{1b} R^{3b} R^{4d} R^{5f} R^{6b}						N95	${ m R}^{1b}$ ${ m R}^{1b}$	R^{3f} R^{3g}	R^{4c} R^{4e}	R ^{5ee} R ^{5ee}	R^{6b} R^{6b}	
$egin{array}{llllllllllllllllllllllllllllllllllll$					N96 N97	R^{1b} R^{1b}	R^{3h}	R ⁴ €	R ^{5ee}	R^{6b}		
N_{20} R_{1b}^{1b} R_{3b}^{3b} R_{4d}^{4d} R_{5g}^{5g} R_{6b}^{6b}					65	N98	R^{1b}	\mathbb{R}^{3i}	R^{4c}	R^{5ae}	R^{6a}	
N21 N22	R^{1b} R^{1b}	R^{3c} R^{3a}	R^{4e} R^{4c}	R^{5g} R^{5h}	R^{6b} R^{6b}	65	N99 N100	R^{1b} R^{1b}	\mathbb{R}^{3j} \mathbb{R}^{3k}	${ m R}^{4c} \ { m R}^{4c}$	R ^{5af} R ^{5ag}	R^{6b} R^{6a}
1122			1.	1.			1,100				1.	

82 TABLE N-continued

TABLE N-continued						IABLE N-continued						
	R_1	R ₃	R ₄	R_5	R_6			R_1	R_3	R_4	R ₅	R_6
N101	R^{1b}	\mathbb{R}^{3k}	R^{4c}	R ^{5ag}	R^{6b}		N179	R^{1b}	\mathbb{R}^{3q}	R^{4e}	R ^{5gg}	R^{6b}
N102	R^{1b}	R ³¹	R^{4c}	R ^{5ag}	R ^{6c}	5	N180	R^{1b}	\mathbb{R}^{3r}	R^{4e}	R ^{5ff}	R^{6b}
N103	\mathbb{R}^{1b}	\mathbb{R}^{3i}	R^{4e}	R^{5ae}	R^{6a}		N181	\mathbb{R}^{1b}	\mathbb{R}^{3r}	R^{4e}	R^{5gg}	R^{6b}
N104	R^{1b}	\mathbb{R}^{3j}	R^{4e}	R^{5af}	R^{6b}		N182	R^{1b}	\mathbb{R}^{3n}	R^{4c}	R^{5hh}	R^{6a}
N105	R^{1b}	\mathbb{R}^{3k}	$\mathbb{R}^{4\epsilon}$	R^{5ag}	R^{6a}		N183	\mathbb{R}^{1b}	R^{3o}	R^{4c}	R^{5jj}	R^{6b}
N106	R^{1b}	\mathbb{R}^{3k}	\mathbb{R}^{4e}	R^{5ag}	R^{6b}		N184	R^{1b}	R^{3o}	R^{4c}	R^{5jj}	R^{6c}
N107	R^{1b}	\mathbb{R}^{3l}	R^{4e}	R^{5ag}	R^{6c}		N185	R^{1b}	R^{3p}	R^{4e}	R^{5hh}	R^{6b}
N108	R^{1b}	\mathbb{R}^{3i}	R^{4f}	R^{5ae}	R^{6a}	10	N186	R^{1b}	R^{3p}	R^{4e}	R^{5jj}	R^{6b}
N109	R^{1b}	R^{3j}	R^{4f}	R^{5af}	R^{6b}		N187	R^{1b}	\mathbb{R}^{3q}	R^{4e}	R^{5hh}	R^{6b}
N110	R^{1b}	\mathbb{R}^{3k}	R^{4f}	R^{5ag}	R^{6a}		N188	R^{1b}	\mathbb{R}^{3q}	R^{4e}	R ^{5jj}	R^{6b}
N111	R_{ib}^{1b}	R^{3k}	R^{4f}	R^{5ag}	R^{6b}		N189	R_{ik}^{1b}	\mathbb{R}^{3r}	R^{4e}	R ^{5hh}	$R_{\epsilon_b}^{6b}$
N112	R^{1b}	R^{3l}	R^{4f}	R^{5ag}	R^{6c}		N190	R^{1b}	\mathbb{R}^{3r}	R^{4e}	R^{5jj}	R^{6b}
N113	R^{1b}	\mathbb{R}^{3m}	\mathbb{R}^{4c}	R ^{5ae}	R^{6a}		N191	R^{1b}	\mathbb{R}^{3n}	R^{4c}	R^{5kk}	$R^{6\alpha}$
N114	R^{1b}	\mathbb{R}^{3m}	R^{4c}	R ^{5af}	R^{6b}	15	N192	R^{1b}	R ³⁰	R^{4c}	R ⁵ !!	R^{6b}
N115	R^{1b}	\mathbb{R}^{3m}	R^{4c}	R ^{5ag}	R^{6a}		N193	R^{1b}	R ³⁰	R^{4c}	R ^{5/l}	R^{6c}
N116	R^{1b}	\mathbb{R}^{3m}	R^{4c}	R ^{5ag} R ^{5ag}	R^{6b}		N194	R^{1b}	\mathbb{R}^{3p}	R^{4e}	R^{5kk} R^{5ll}	R^{6b}
N117	R^{1b}	\mathbb{R}^{3m}	R^{4c}		R^{6c}		N195	R^{1b}	R^{3p}	R ^{4e}	R^{5k}	R^{6b}
N118	R^{1b}	\mathbb{R}^{3m}	R^{4e}	R ^{5ae}	R^{6a}		N196	R^{1b}	R^{3q}	R ^{4e}		R^{6b}
N119	R^{1b} R^{1b}	R^{3m} R^{3m}	R ^{4e} R ^{4e}	R ^{5af} R ^{5ag}	R^{6b} R^{6a}		N197	R^{1b}	R^{3q}	R^{4e}	R^{5ll} R^{5kk}	R^{6b} R^{6b}
N120	R^{1b}	\mathbb{R}^{3m}	R ^{4e}	R ^{5ag}	R^{6b}	20	N198	${f R}^{1b} \ {f R}^{1b}$	R^{3r} R^{3r}	R^{4e}	R ^{5II}	R^{6b}
N121	R^{1b}	\mathbb{R}^{3m}	R^{4e}	R^{5ag}	R^{6c}		N199	R^{1b}	\mathbb{R}^{3n}	$ m R^{4e}$ $ m R^{4c}$	R ^{5mm}	R ⁶
N122	R^{1b}	\mathbb{R}^{3m}	R ⁴	R ^{5ae}	R^{6a}		N200	R^{1b}	R ³ 0	R^{4c}	R ⁵ⁿⁿ	R^{6b}
N123	R^{1b}	\mathbb{R}^{3m}	R ⁴ f	R^{5af}	R^{6b}		N201	R^{1b}	R ³ 0	R^{4c}	R^{5nn}	R^{6c}
N124 N125	R^{1b}	\mathbb{R}^{3m}	R ⁴	R ^{5ag}	R^{6a}		N202 N203	R^{1b}	R^{3p}	R ^{4e}	R ^{5mm}	R^{6b}
N125 N126	R^{1b}	\mathbb{R}^{3m}	R ⁴ ∫	R ^{5ag}	R^{6b}		N203 N204	R^{1b}	R^{3p}	R^{4e}	R ⁵ⁿⁿ	R^{6b}
N120	R^{1b}	\mathbb{R}^{3m}	R^{4f}	R^{5ag}	R^{6c}	25	N204 N205	R^{1b}	\mathbb{R}^{3q}	R^{4e}	R ^{5mm}	R^{6b}
N127	R^{1b}	\mathbb{R}^{3i}	R^{4c}	R ^{5ah}	R^{6a}	23	N205	R^{1b}	\mathbb{R}^{3q}	R^{4e}	R^{5nn}	R^{6b}
N129	R^{1b}	\mathbb{R}^{3j}	R^{4c}	R ^{5ai}	R^{6b}		N200	R^{1b}	\mathbb{R}^{3r}	R^{4e}	R ^{5mm}	R^{6b}
N130	R^{1b}	\mathbb{R}^{3k}	R^{4c}	R^{5ak}	R^{6a}		N208	R^{1b}	R^{3r}	R^{4e}	R ⁵ⁿⁿ	R^{6b}
N131	R^{1b}	\mathbb{R}^{3k}	R^{4c}	R^{5ak}	R^{6b}		N209	R^{1b}	\mathbb{R}^{3n}	R^{4c}	R ⁵ⁿⁿ	R ⁶ ∕2
N131	R^{1b}	R^{3l}	R^{4c}	R ^{5ak}	R^{6c}		N210	R^{1b}	R ³ 0	R^{4c}	R ⁵ⁿⁿ	R^{6b}
N133	R^{1b}	\mathbb{R}^{3i}	R ^{4e}	R^{5ah}	R^{6a}	30	N211	R^{1b}	R ³⁰	R^{4c}	R^{5nn}	R^{6c}
N134	R^{1b}	R^{3j}	R^{4e}	R ^{5ai}	R^{6b}	30	N212	R^{1b}	R^{3p}	R ^{4e}	R ⁵ⁿⁿ	R ^{6b}
N135	R^{1b}	\mathbb{R}^{3k}	R ^{4e}	R ^{5ak}	R^{6a}		N213	R^{1b}	R^{3p}	R ^{4e}	R ⁵ⁿⁿ	R^{6b}
N136	R^{1b}	\mathbb{R}^{3k}	R^{4e}	R ^{5ak}	R^{6b}		N214	R^{1b}	\mathbb{R}^{3q}	R^{4e}	R ⁵ⁿⁿ	R^{6b}
N137	R^{1b}	R^{3l}	R ⁴ €	R^{5ak}	R^{6c}		N215	R^{1b}	\mathbb{R}^{3q}	R^{4e}	R ⁵ⁿⁿ	R^{6b}
N138	R^{1b}	\mathbb{R}^{3i}	R^{4f}	R^{5ah}	R^{6a}		N216	R^{1b}	\mathbb{R}^{3r}	R ^{4e}	R ⁵ⁿⁿ	R^{6b}
N139	R^{1b}	\mathbb{R}^{3j}	R^{4f}	R^{5ai}	R^{6b}	2.5	N217	R^{1b}	\mathbb{R}^{3r}	R^{4e}	R^{5nn}	R^{6b}
N140	\mathbb{R}^{1b}	\mathbb{R}^{3k}	R^{4f}	R^{5ak}	R^{6a}	35	N218	\mathbb{R}^{1b}	\mathbb{R}^{3n}	R^{4c}	R^{5oo}	$R^{6\alpha}$
N141	R^{1b}	\mathbb{R}^{3k}	R^{4f}	R^{5ak}	R^{6b}		N219	\mathbb{R}^{1b}	R^{3o}	R^{4c}	R ⁵⁰⁰	R^{6b}
N142	R^{1b}	\mathbb{R}^{3l}	R^{4f}	R^{5ak}	R^{6c}		N220	R^{1b}	R^{3o}	R^{4c}	R ⁵⁰⁰	R^{6c}
N143	R^{1b}	\mathbb{R}^{3m}	R^{4c}	R^{5ah}	R^{6a}		N221	R^{1b}	R^{3p}	R^{4e}	R ⁵⁰⁰	R^{6b}
N144	R^{1b}	\mathbb{R}^{3m}	R^{4c}	R^{5ai}	R^{6b}		N222	R^{1b}	\mathbb{R}^{3p}	R^{4e}	R^{500}	R^{6b}
N145	R^{1b}	\mathbb{R}^{3m}	R^{4c}	R^{5ak}	R^{6a}	40	N223	R^{1b}	\mathbb{R}^{3q}	R^{4e}	R ⁵⁰⁰	R^{6b}
N146	R^{1b}	\mathbb{R}^{3m}	R^{4c}	R^{5ak}	R^{6b}	40	N224	R^{1b}	R^{3q}	R^{4e}	R ⁵⁰⁰	R^{6b}
N147	R^{1b}	\mathbb{R}^{3m}	R^{4c}	R^{5ak}	R^{6c}		N225	R^{1b}	\mathbb{R}^{3r}	R^{4e}	R ⁵⁰⁰	R^{6b}
N148	R^{1b}	\mathbb{R}^{3m}	\mathbb{R}^{4e}	R^{5ah}	R^{6a}		N226	R^{1b}	\mathbb{R}^{3r}	R^{4e}	R ⁵⁰⁰	R^{6b}
N149	R^{1b}	\mathbb{R}^{3m}	R^{4e}	R^{5ai}	R^{6b}		N227	R^{1b}	\mathbb{R}^{3n}	R^{4c}	R^{5pp}	$R^{6\alpha}$
N150	R_{\perp}^{1b}	\mathbb{R}^{3m}	R^{4e}	R^{5ak}	R^{6a}		N228	R^{1b}	R^{3o}	R^{4c}	R^{5qq}	R^{6b}
N151	R^{1b}	\mathbb{R}^{3m}	R^{4e}	R^{5ak}	R^{6b}		N229	R^{1b}	R^{3o}	R^{4c}	R^{5qq}	R^{6c}
N152	R^{1b}	\mathbb{R}^{3m}	R^{4e}	R^{5ak}	R^{6c}	45	N230	R^{1b}	\mathbb{R}^{3p}	R ^{4e}	R^{5qq}	R^{6b}
N153	R^{1b}	\mathbb{R}^{3m}	R^{4f}	R ^{5ah}	R^{6a}		N231	R^{1b}	R^{3p}	R ^{4e}	R ^{5qq}	R ^{6b}
N154	R^{1b}	R^{3m}	R^{4f}	R^{5ai} R^{5ak}	R^{6b}		N232	R^{1b}	R^{3q}	R ^{4e}	R ^{5qq}	R^{6b}
N155	R^{1b} R^{1b}	R^{3m} R^{3m}	$ m R^{4f}$ $ m R^{4f}$	R ^{5ak}	R^{6a} R^{6b}		N233	R^{1b} R^{1b}	\mathbb{R}^{3q} \mathbb{R}^{3r}	R ^{4e} R ^{4e}	R^{5qq} R^{5qq}	R^{6b} R^{6b}
N156	R^{1b} R^{1b}	R^{3m} R^{3m}	R⁴⁄ R ⁴ f	R ^{5ak}	R^{6c}		N234	R^{1b} R^{1b}	R^{3r} R^{3r}	R^{4e} R^{4e}	R^{5qq} R^{5qq}	R^{6b}
N157	R^{1b} R^{1b}	\mathbb{R}^{3i} \mathbb{R}^{3i}	R^{4c}	R ^{5al}	R^{6a}		N235	R^{1b}	\mathbb{R}^{3n}	R^{4c} R^{4c}	R^{5qq} R^{5pp}	R ^{6α}
N158 N159	R^{1b}	\mathbb{R}^{3j}	R^{4c}	R ^{5an}	R^{6b}	50	N236 N237	R^{1b}	R ³⁰	R^{4c}	R^{5qq} R^{5qq}	R^{6b}
N159 N160	R^{1b}	\mathbb{R}^{3k}	R^{4c}	R ^{5an}	R^{6a}		N237 N238	R^{1b}	R ³ 0	R^{4c}	R^{5qq}	R^{6c}
N160 N161	R^{1b}	\mathbb{R}^{3k}	R^{4c}	R ^{5an}	R^{6b}		N238 N239	R^{1b}	\mathbb{R}^{3p}	R ^{4e}	R^{5qq}	R^{6b}
N161 N162	R^{1b}	R^{3l}	R^{4c}	R ^{5an}	R^{6c}		N239 N240	R^{1b}	R^{3p}	R^{4e}	R^{5qq}	R^{6b}
N163	R^{1b}	\mathbb{R}^{3i}	R^{4e}	R ^{5al}	R^{6a}		N240 N241	R^{1b}	\mathbb{R}^{3q}	R^{4e}	R^{5qq}	R^{6b}
N164	R^{1b}	\mathbb{R}^{3j}	R ⁴ e	R ^{5am}	R ^{6b}		N241 N242	R^{1b}	\mathbb{R}^{3q}	R^{4e}	R^{5qq}	R^{6b}
N165	R^{1b}	\mathbb{R}^{3k}	R ^{4e}	R 5an	R^{6a}	55	N243	R^{1b}	R^{3r}	R^{4e}	R^{5qq}	R^{6b}
N166	R^{1b}	R^{3k}	R ⁴ e	R^{5an}	R^{6b}		N244	\mathbb{R}^{1b}	\mathbb{R}^{3r}	R^{4e}	R 5qq	R^{6b}
N167	R^{1b}	R^{3l}	R^{4e}	R^{5an}	R^{6c}		N245	R^{1b}	\mathbb{R}^{3n}	R^{4c}	R^{5rr}	R ⁶ ∕a
N168	R^{1b}	\mathbb{R}^{3i}	R ⁴ €	R^{5al}	R^{6a}		N246	R^{1b}	R ³⁰	R^{4c}	R^{5rr}	R^{6b}
N169	R^{1b}	\mathbb{R}^{3j}	R ^{4f}	R^{5am}	R^{6b}		N247	R^{1b}	R ³⁰	R^{4c}	R ^{5rr}	R^{6c}
N170	R^{1b}	\mathbb{R}^{3k}	R ⁴	R ^{5an}	R^{6a}		N248	R^{1b}	R^{3p}	R ^{4e}	R^{5rr}	R^{6b}
N171	R^{1b}	\mathbb{R}^{3k}	R^{4f}	R^{5an}	R^{6b}	60	N249	R^{1b}	R^{3p}	R^{4e}	R^{5rr}	R^{6b}
N172	R^{1b}	R^{3l}	R ^{4f}	R^{5an}	R^{6c}		N250	R^{1b}	\mathbb{R}^{3q}	R^{4e}	R^{5rr}	R^{6b}
N173	R^{1b}	\mathbb{R}^{3n}	R^{4c}	R ^{5,ff}	R^{6a}		N251	R^{1b}	\mathbb{R}^{3q}	R ^{4e}	R^{5rr}	R^{6b}
N174	R^{1b}	R ³⁰	R^{4c}	R^{5gg}	R^{6b}		N252	R^{1b}	\mathbb{R}^{3r}	R^{4e}	R^{5rr}	R^{6b}
N175	R^{1b}	R^{3o}	R^{4c}	R^{5gg}	R^{6c}		N253	R^{1b}	R^{3r}	R ^{4e}	R^{5rr}	R^{6b}
	R^{1b}	R^{3p}	R^{4e}	R ^{5ff}	R^{6b}		N254	R^{1b}	\mathbb{R}^{3s}	R^{4a}	\mathbb{R}^{5ss}	R^{6b}
N176												
N176 N177	R^{1b}	R^{3p}	R^{4e}	R^{5gg}	R^{6b}	65	N255	R^{1b}	R^{3t}	R^{4b}	R^{5ss}	R^{6b}

84

TADI	E M α	ontinued
LADL	/C/IN-CU	munuea

		17 11111	11 Contini	aca					17 11111	TV COILLIII	ucu	
	R_1	R_3	R ₄	R ₅	R_6			R ₁	R_3	R ₄	R_5	R_6
N1257	R^{1b}	\mathbb{R}^{3h}	R ^{4e}	R ^{5ss}	R ^{6b}		NIDDE	\mathbb{R}^{1b}	\mathbb{R}^{3t}	R^{4b}	R ^{5bo}	R^{6b}
N257	R^{1b}	R^{3s}	R^{4a}	R ^{5tt}	R^{6b}	5	N335	R^{1b}	R ^{3g}	R ^{4e}	R ^{5bo}	R^{6b}
N258 N259	R^{1b}	\mathbb{R}^{3t}	R^{4b}	R ^{5tt}	R^{6b}	3	N336 N337	R^{1b}	\mathbb{R}^{3h}	R^{4e}	R^{5bo}	R^{6b}
N259 N260	R^{1b}	R ^{3g}	R^{4e}	R ^{5tt}	R^{6b}		N338	R^{1b}	R^{3s}	R^{4a}	R^{5bp}	R^{6b}
N261	R^{1b}	\mathbb{R}^{3h}	R^{4e}	R ^{5tt}	R^{6b}		N339	R^{1b}	\mathbb{R}^{3t}	R^{4b}	R ^{5bp}	R^{6b}
N262	R^{1b}	R^{3s}	R^{4a}	R ^{5uu}	R^{6b}		N340	R^{1b}	\mathbb{R}^{3g}	R ^{4e}	R^{5bp}	R^{6b}
N263	R^{1b}	R^{3t}	R^{4b}	R ^{5uu}	R^{6b}		N341	R^{1b}	R^{3h}	R ^{4e}	R^{5bp}	R^{6b}
N264	R^{1b}	R ^{3g}	R^{4e}	R ^{5uu}	R^{6b}	10	N342	R^{1b}	R^{3s}	R^{4a}	R^{5bq}	R^{6b}
N265	R^{1b}	\mathbb{R}^{3h}	R^{4e}	R ^{5uu}	R^{6b}	10	N343	R^{1b}	\mathbb{R}^{3t}	R^{4b}	R^{5bq}	R^{6b}
N266	R^{1b}	\mathbb{R}^{3s}	R^{4a}	R ^{5vv}	R^{6b}		N344	R^{1b}	R^{3g}	R^{4e}	R^{5bq}	R^{6b}
N267	R^{1b}	\mathbb{R}^{3t}	R^{4b}	$R^{5\nu\nu}$	R^{6b}		N345	R^{1b}	\mathbb{R}^{3h}	R^{4e}	R^{5bq}	R^{6b}
N268	R^{1b}	R^{3g}	R^{4e}	$R^{5\nu\nu}$	R^{6b}		N346	\mathbb{R}^{1b}	\mathbb{R}^{3s}	R^{4a}	R^{5br}	R^{6b}
N269	\mathbb{R}^{1b}	\mathbb{R}^{3h}	R^{4e}	$R^{5\nu\nu}$	R^{6b}		N347	\mathbb{R}^{1b}	\mathbb{R}^{3t}	R^{4b}	R^{5bq}	R^{6b}
N270	\mathbb{R}^{1b}	\mathbb{R}^{3s}	R^{4a}	R^{5ww}	R^{6b}	1.5	N348	\mathbb{R}^{1b}	\mathbb{R}^{3g}	R^{4e}	R^{5bq}	R^{6b}
N271	R^{1b}	\mathbb{R}^{3t}	R^{4b}	R^{5ww}	R^{6b}	15	N349	\mathbb{R}^{1b}	\mathbb{R}^{3h}	R^{4e}	R^{5bq}	R^{6b}
N272	R^{1b}	R^{3g}	R^{4e}	R^{5ww}	R^{6b}		N350	\mathbb{R}^{1b}	\mathbb{R}^{3s}	R^{4a}	R^{5bs}	R^{6b}
N273	\mathbb{R}^{1b}	\mathbb{R}^{3h}	\mathbb{R}^{4e}	R^{5ww}	R^{6b}		N351	\mathbb{R}^{1b}	\mathbb{R}^{3t}	R^{4b}	R^{5bs}	R^{6b}
N274	R^{1b}	\mathbb{R}^{3s}	R^{4a}	R^{5xx}	R^{6b}		N352	\mathbb{R}^{1b}	\mathbb{R}^{3g}	\mathbb{R}^{4e}	\mathbb{R}^{5bs}	R^{6b}
N275	R^{1b}	\mathbb{R}^{3t}	R^{4b}	R^{5xx}	R^{6b}		N353	R^{1b}	\mathbb{R}^{3h}	R^{4e}	R^{5bs}	R^{6b}
N276	R^{1b}	R^{3g}	R^{4e}	R^{5xx}	R^{6b}		N354	\mathbb{R}^{1b}	\mathbb{R}^{3s}	R^{4a}	R^{5bt}	R^{6b}
N277	\mathbb{R}^{1b}	\mathbb{R}^{3h}	R^{4e}	R^{5xx}	R^{6b}	20	N355	\mathbb{R}^{1b}	\mathbb{R}^{3t}	R^{4b}	R^{5bt}	R^{6b}
N278	R^{1b}	\mathbb{R}^{3s}	R^{4a}	R^{5zz}	R^{6b}		N356	\mathbb{R}^{1b}	\mathbb{R}^{3g}	R^{4e}	R^{5bt}	R^{6b}
N279	\mathbb{R}^{1b}	\mathbb{R}^{3t}	R^{4b}	R^{5zz}	R^{6b}		N357	\mathbb{R}^{1b}	\mathbb{R}^{3h}	\mathbb{R}^{4e}	R^{5bt}	R^{6b}
N280	R^{1b}	\mathbb{R}^{3g}	R^{4e}	R^{5zz}	R^{6b}		N358	\mathbb{R}^{1b}	\mathbb{R}^{3s}	\mathbb{R}^{4a}	R^{5bu}	R^{6b}
N281	R^{1b}	R^{3h}	\mathbb{R}^{4e}	R^{5zz}	R^{6b}		N359	R^{1b}	R^{3t}	R^{4b}	R^{5bu}	R^{6b}
N282	R^{1b}	\mathbb{R}^{3s}	R^{4a}	R^{5ba}	R^{6b}		N360	R^{1b}	R^{3g}	R^{4e}	R^{5bu}	R^{6b}
N283	R^{1b}	\mathbb{R}^{3t}	R^{4b}	R^{5ba}	R^{6b}	25	N361	R^{1b}	\mathbb{R}^{3h}	\mathbb{R}^{4e}	R^{5bu}	R^{6b}
N284	R^{1b}	\mathbb{R}^{3g}	R^{4e}	R ^{5ba}	R^{6b}		N362	R^{1b}	\mathbb{R}^{3s}	R^{4a}	$R^{5b\nu}$	R^{6b}
N285	R^{1b}	\mathbb{R}^{3h}	R^{4e}	R^{5ba}	R^{6b}		N363	R^{1b}	R^{3t}	R^{4b}	R^{5bv}	R^{6b}
N286	R^{1b}	\mathbb{R}^{3s}	R^{4a}	R^{5bc}	R^{6b}		N364	\mathbb{R}^{1b}	R^{3g}	R^{4e}	R^{5bv}	R^{6b}
N287	R^{1b}	\mathbb{R}^{3t}	R^{4b}	R^{5bc}	R^{6b}		N365	\mathbb{R}^{1b}	\mathbb{R}^{3h}	R^{4e}	R^{5bv}	R^{6b}
N288	R^{1b}	R^{3g}	R^{4e}	R^{5bc}	R^{6b}		N366	R^{1b}	\mathbb{R}^{3s}	R^{4a}	R^{5bw}	R^{6b}
N289	R^{1b}	\mathbb{R}^{3h}	R^{4e}	R^{5bc}	R^{6b}	30	N367	R^{1b}	\mathbb{R}^{3t}	R^{4b}	R ^{5bw}	R^{6b}
N290	R^{1b}	\mathbb{R}^{3s}	R^{4a}	R ^{5bd}	R^{6b}		N368	R^{1b}	R^{3g}	\mathbb{R}^{4e}	R ^{5bw}	R^{6b}
N291	R^{1b}	R^{3t}	R^{4b}	R^{5bd}	R^{6b}		N369	R^{1b}	\mathbb{R}^{3h}	R^{4e}	R^{5bw}	R^{6b}
N292	R^{1b}	R^{3g}	R^{4e}	R^{5bd}	R^{6b}		N370	R^{1b}	\mathbb{R}^{3s}	R^{4a}	R^{5bx}	R^{6b}
N293	R^{1b}	\mathbb{R}^{3h}	\mathbb{R}^{4e}	R ^{5bd}	R^{6b}		N371	R^{1b}	\mathbb{R}^{3t}	R^{4b}	R^{5bx}	R^{6b}
N294	R^{1b}	\mathbb{R}^{3s}	R^{4a}	R^{5be}	R^{6b}		N372	R^{1b}	R^{3g}	R^{4e}	R^{5bx}	R^{6b}
N295	R^{1b}	\mathbb{R}^{3t}	R^{4b}	R^{5be}	R^{6b}	35	N373	R^{1b}	R_{2}^{3h}	R^{4e}	R^{5bx}	R^{6b}
N296	R^{1b}	R ^{3g}	R^{4e}	R ^{5be}	R^{6b}		N374	R_{II}^{1b}	\mathbb{R}^{3s}	R^{4a}	R^{5by}	R^{6b}
N297	R^{1b}	\mathbb{R}^{3h}	R ^{4e}	R ^{5be}	R^{6b}		N375	R^{1b}	\mathbb{R}^{3t}	R^{4b}	R^{5by}	R^{6b}
N298	R^{1b}	\mathbb{R}^{3s}	R^{4a}	R^{5bf}	R^{6b}		N376	R^{1b}	R^{3g}	R^{4e}	R^{5by}	R_{eb}^{6b}
N299	R^{1b}	\mathbb{R}^{3t}	R ^{4b}	R ^{5bf}	R ^{6b}		N377	R^{1b}	\mathbb{R}^{3h}	R ^{4e}	R ^{5by}	R ^{6b}
N300	R^{1b}	R^{3g}	R ^{4e}	R^{5bf}	R^{6b}		N378	R^{1b}	\mathbb{R}^{3s}	R^{4a}	R^{5bz}	R^{6b} R^{6b}
N301	R^{1b} R^{1b}	R^{3h} R^{3s}	R^{4e} R^{4a}	R^{5bf} R^{5bg}	R^{6b} R^{6b}	40	N379	R^{1b} R^{1b}	R^{3t}	$ m R^{4b}$ $ m R^{4e}$	R^{5bz} R^{5bz}	R^{6b}
N302	R^{1b}		R^{4b}	R ^{5bg}	R^{6b}		N380		R^{3g} R^{3h}	R^{4e}	R^{5bz}	R^{6b}
N303	R^{1b}	\mathbb{R}^{3t} \mathbb{R}^{3g}	R ^{4e}	R ^{5bg}	R^{6b}		N381	R^{1b} R^{1b}	R^{3s}	R^{4a}	R ^{5ca}	R^{6b}
N304	R^{1b}	R^{3h}	R ^{4e}	R ^{5bg}	R^{6b}		N382	R^{1b}	R^{3t}	R^{4b}	R ^{5ca}	R^{6b}
N305	R^{1b}	\mathbb{R}^{3s}	R^{4a}	R ^{5bh}	R^{6b}		N383	R^{1b}	R ^{3g}	R ^{4e}	R ^{5ca}	R^{6b}
N306 N307	R^{1b}	\mathbb{R}^{3t}	R^{4b}	R^{5bh}	R^{6b}		N384 N385	R^{1b}	\mathbb{R}^{3h}	R^{4e}	R ^{5ca}	R^{6b}
N307 N308	R^{1b}	R ^{3g}	R^{4e}	R^{5bh}	R^{6b}	45	N386	R^{1b}	\mathbb{R}^{3s}	R^{4a}	R^{5cb}	R^{6b}
N309	R^{1b}	\mathbb{R}^{3h}	R^{4e}	R^{5bh}	R^{6b}	73	N387	R^{1b}	R ³ t	R^{4b}	R^{5cb}	R^{6b}
N309 N310	R^{1b}	R^{3s}	R^{4a}	R 5bi	R^{6b}		N388	R^{1b}	R^{3g}	R ⁴ e	R^{5cb}	R^{6b}
N310	R^{1b}	\mathbb{R}^{3t}	\mathbb{R}^{4b}	R^{5bi}	R^{6b}		N389	R^{1b}	\mathbb{R}^{3h}	R ^{4e}	R^{5cb}	R^{6b}
N312	R^{1b}	R ^{3g}	R ^{4e}	R^{5bi}	R^{6b}		N390	R^{1b}	\mathbb{R}^{3s}	R^{4a}	R ^{5cd}	R^{6b}
N313	R^{1b}	R^{3h}	R ^{4e}	R ^{5bi}	R^{6b}		N391	R^{1b}	R ³ t	R^{4b}	R ^{5cd}	R^{6b}
N314	R^{1b}	\mathbb{R}^{3s}	R^{4a}	R^{5bj}	R^{6b}	50	N392	R^{1b}	R^{3g}	R^{4e}	R ^{5cd}	R^{6b}
N315	\mathbb{R}^{1b}	R^{3t}	R^{4b}	\mathbb{R}^{5bj}	R^{6b}	50	N393	R^{1b}	\mathbb{R}^{3h}	R^{4e}	R ^{5cd}	R^{6b}
N316	R^{1b}	\mathbb{R}^{3g}	R^{4e}	\mathbb{R}^{5bj}	R^{6b}		N394	R^{1b}	R^{3s}	R^{4a}	R ^{5ce}	R^{6b}
N317	R^{1b}	\mathbb{R}^{3h}	R^{4e}	R^{5bj}	R^{6b}		N395	R^{1b}	\mathbb{R}^{3t}	R^{4b}	R ^{5ce}	R^{6b}
N318	R^{1b}	\mathbb{R}^{3s}	R^{4a}	R^{5bk}	R^{6b}		N396	R^{1b}	R^{3g}	R^{4e}	R ^{5ce}	R^{6b}
N319	\mathbb{R}^{1b}	\mathbb{R}^{3t}	R^{4b}	R^{5bk}	R^{6b}		N397	R^{1b}	\mathbb{R}^{3h}	R^{4e}	R ^{5ce}	R^{6b}
N320	R^{1b}	\mathbb{R}^{3g}	\mathbb{R}^{4e}	R^{5bk}	R^{6b}		N398	R^{1b}	\mathbb{R}^{3s}	R^{4a}	R^{5cf}	R^{6b}
N321	\mathbb{R}^{1b}	\mathbb{R}^{3h}	R^{4e}	R^{5bk}	R^{6b}	55	N399	\mathbb{R}^{1b}	\mathbb{R}^{3t}	R^{4b}	R^{5cf}	R^{6b}
N322	R^{1b}	\mathbb{R}^{3s}	R^{4a}	R^{5bl}	R^{6b}		N400	R^{1b}	R^{3g}	\mathbb{R}^{4e}	R^{5cf}	R^{6b}
N323	R^{1b}	\mathbb{R}^{3t}	R^{4b}	R^{5bl}	R^{6b}		N401	\mathbb{R}^{1b}	\mathbb{R}^{3h}	\mathbb{R}^{4e}	R^{5cf}	R^{6b}
N324	R^{1b}	\mathbb{R}^{3g}	R^{4e}	R^{5bl}	R^{6b}		N402	\mathbb{R}^{1b}	\mathbb{R}^{3s}	R^{4a}	R^{5cg}	R^{6b}
N325	\mathbb{R}^{1b}	\mathbb{R}^{3h}	$R^{4\epsilon}$	R^{5bl}	R^{6b}		N403	\mathbb{R}^{1b}	\mathbb{R}^{3t}	R^{4b}	R^{5cg}	R^{6b}
N326	R^{1b}	\mathbb{R}^{3s}	R^{4a}	R^{5bm}	R^{6b}		N404	\mathbb{R}^{1b}	R^{3g}	R^{4e}	R ^{5cg}	R^{6b}
N327	R^{1b}	\mathbb{R}^{3t}	R^{4b}	\mathbb{R}^{5bm}	R^{6b}	60	N405	\mathbb{R}^{1b}	\mathbb{R}^{3h}	R^{4e}	R^{5cg}	R^{6b}
N328	R^{1b}	R^{3g}	R^{4e}	R^{5bm}	R^{6b}		N406	R^{1b}	\mathbb{R}^{3s}	\mathbb{R}^{4a}	R^{5ch}	R^{6b}
N329	R^{1b}	\mathbb{R}^{3h}	R^{4e}	R^{5bm}	R^{6b}		N407	R^{1b}	\mathbb{R}^{3t}	R^{4b}	R^{5ch}	R^{6b}
N330	R^{1b}	\mathbb{R}^{3s}	R^{4a}	R^{5bn}	R^{6b}		N408	\mathbb{R}^{1b}	\mathbb{R}^{3g}	R^{4e}	R^{5ch}	R^{6b}
N331	R^{1b}	\mathbb{R}^{3t}	R^{4b}	\mathbb{R}^{5bn}	R^{6b}		N409	R^{1b}	\mathbb{R}^{3h}	R^{4e}	R^{5ch}	R^{6b}
N332	R^{1b}	\mathbb{R}^{3g}	R^{4e}	\mathbb{R}^{5bn}	R^{6b}		N410	R^{1b}	\mathbb{R}^{3s}	R^{4a}	R^{5ci}	R^{6b}
N333	R^{1b}	\mathbb{R}^{3h}	R^{4e}	R^{5bn}	R^{6b}	65	N411	\mathbb{R}^{1b}	R^{3t}	R^{4b}	R^{5ci}	R^{6b}
N334	R^{1b}	\mathbb{R}^{3s}	R^{4a}	R^{5bo}	R^{6b}		N412	\mathbb{R}^{1b}	\mathbb{R}^{3g}	R^{4e}	\mathbb{R}^{5ci}	R^{6b}

					USS	7,326,5	13 B2						
			85							86			
		TABLE	N-contin	ued					TABLE	N-contin	ued		_
	R_1	R ₃	R_4	R_5	R_6			R_1	R ₃	R_4	R_5	R_6	
N413	R^{1b}	\mathbb{R}^{3h}	R^{4e}	\mathbb{R}^{5ci}	R^{6b}		N491	R^{1b}	\mathbb{R}^{3t}	R^{4b}	\mathbb{R}^{5dc}	R^{6b}	
N414	R^{1b}	\mathbb{R}^{3s}	R^{4a}	\mathbb{R}^{5cj}	R^{6b}	5	N492	R^{1b}	\mathbb{R}^{3g}	R^{4e}	R^{5dc}	R^{6b}	
N415	R^{1b}	\mathbb{R}^{3t}	R^{4b}	R^{5cj}	R^{6b}		N493	R^{1b}	\mathbb{R}^{3h}	R^{4e}	R^{5dc}	R^{6b}	
N416	R^{1b}	R^{3g}	R^{4e}	R^{5cj}	R^{6b}		N494	R^{1b}	\mathbb{R}^{3s}	R^{4a}	R^{5de}	R^{6b}	
N417	R^{1b}	\mathbb{R}^{3h}	R^{4e}	R^{5cj}	R^{6b}		N495	R^{1b}	\mathbb{R}^{3t}	R^{4b}	R^{5de}	R ^{6b}	
N418	R^{1b}	R^{3s}	R^{4a}	R^{5ck}	R^{6b}		N496	R^{1b}	R^{3g}	R^{4e}	R ^{5de}	R^{6b}	
N419	R^{1b} R^{1b}	R^{3t} R^{3g}	R^{4b} R^{4e}	R ^{5ck} R ^{5ck}	R^{6b} R^{6b}		N497	R^{1b} R^{1b}	R^{3h} R^{3s}	R^{4e} R^{4a}	R ^{5de} R ^{5df}	R^{6b} R^{6b}	
N420 N421	R^{1b}	\mathbb{R}^{3h}	R ^{4e}	R ^{5ck}	R^{6b}	10	N498 N499	R^{1b}	R^{3t}	R^{4b}	R^{5df}	R^{6b}	
N421 N422	R^{1b}	R^{3s}	R^{4a}	R^{5cl}	R^{6b}		N500	R^{1b}	R^{3g}	R ^{4e}	R ^{5df}	R^{6b}	
N423	R^{1b}	R^{3t}	R^{4b}	R ^{5cl}	R^{6b}		N501	R^{1b}	R^{3h}	R^{4e}	R ^{5df}	R^{6b}	
N424	R^{1b}	R^{3g}	R ^{4e}	R ^{5cl}	R^{6b}		N502	R^{1b}	R^{3s}	R^{4a}	R^{5dg}	R^{6b}	
N425	R^{1b}	\mathbb{R}^{3h}	R ^{4e}	R^{5cl}	R^{6b}		N503	R^{1b}	R^{3t}	R^{4b}	R 5dg	R^{6b}	
N426	R^{1b}	\mathbb{R}^{3s}	R^{4a}	R ^{5cm}	R^{6b}		N504	R^{1b}	\mathbb{R}^{3g}	R ^{4e}	R^{5dg}	R^{6b}	
N427	R^{1b}	\mathbb{R}^{3t}	R^{4b}	R ^{5cm}	R^{6b}	15	N505	R^{1b}	\mathbb{R}^{3h}	R^{4e}	R^{5dg}	R^{6b}	
N428	R^{1b}	\mathbb{R}^{3g}	R^{4e}	R^{5cm}	R^{6b}		N506	R^{1b}	\mathbb{R}^{3s}	R^{4a}	R^{5dh}	R^{6b}	
N429	R^{1b}	\mathbb{R}^{3h}	R^{4e}	R^{5cm}	R^{6b}		N507	R^{1b}	\mathbb{R}^{3t}	R^{4b}	R^{5dh}	R^{6b}	
N430	\mathbb{R}^{1b}	\mathbb{R}^{3s}	R^{4a}	\mathbb{R}^{5cn}	R^{6b}		N508	\mathbb{R}^{1b}	\mathbb{R}^{3g}	R^{4e}	R^{5dh}	R^{6b}	
N431	R^{1b}	\mathbb{R}^{3t}	R^{4b}	R^{5cn}	R^{6b}		N509	R^{1b}	\mathbb{R}^{3h}	R^{4e}	R^{5dh}	R^{6b}	
N432	\mathbb{R}^{1b}	\mathbb{R}^{3g}	R^{4e}	R^{5cn}	R^{6b}	20	N510	R^{1b}	\mathbb{R}^{3s}	R^{4a}	R ^{5di}	R^{6b}	
N433	R^{1b}	\mathbb{R}^{3h}	R^{4e}	R^{5cn}	R^{6b}	20	N511	R^{1b}	\mathbb{R}^{3t}	R^{4b}	R ^{5di}	R^{6b}	
N434	R^{1b}	\mathbb{R}^{3s}	R^{4a}	R^{5co}	R^{6b}		N512	R^{1b}	\mathbb{R}^{3g}	R^{4e}	R^{5di}	R^{6b}	
N435	R^{1b}	\mathbb{R}^{3t}	R^{4b}	R ^{5co}	R^{6b}		N513	R^{1b}	\mathbb{R}^{3h}	R^{4e}	R ^{5di}	R^{6b}	
N436	R^{1b}	R^{3g}	R ^{4e}	R ^{5co}	R^{6b}		N514	R^{1b}	\mathbb{R}^{3s}	R^{4a}	R^{5dj}	R^{6b}	
N437	${f R}^{1b} \ {f R}^{1b}$	R^{3h} R^{3s}	R^{4e} R^{4a}	R^{5co} R^{5cp}	$rac{R^{6b}}{R^{6b}}$		N515	R^{1b}	R^{3t}	R^{4b}	${ m R}^{5dj} \ { m R}^{5dj}$	${ m R}^{6b}$ ${ m R}^{6b}$	
N438	R^{1b}	\mathbb{R}^{3t}	R^{4b}	R ^{5cp}	R^{6b}	25	N516	${f R}^{1b} \ {f R}^{1b}$	R^{3g} R^{3h}	${ m R}^{4e} \ { m R}^{4e}$	R ^{5dj}	R^{6b}	
N439 N440	R^{1b}	\mathbb{R}^{3g}	$^{ m R}$	R^{5cp}	R^{6b}	23	N517 N518	R^{1b}	R^{3s}	R^{4a}	R ^{5dk}	R^{6b}	
N440 N441	R^{1b}	\mathbb{R}^{3h}	R^{4e}	R^{5cp}	R^{6b}		N518 N519	R^{1b}	R^{3t}	R^{4b}	R ^{5dk}	R^{6b}	
N442	R^{1b}	R^{3s}	R^{4a}	R^{5cq}	R^{6b}		N520	R^{1b}	R^{3g}	R^{4e}	R ^{5dk}	R^{6b}	
N443	R^{1b}	\mathbb{R}^{3t}	R^{4b}	R^{5cq}	R^{6b}		N521	R^{1b}	R^{3h}	R ^{4e}	R ^{5dk}	R^{6b}	
N444	R^{1b}	\mathbb{R}^{3g}	R^{4e}	R^{5cq}	R^{6b}		N522	R^{1b}	\mathbb{R}^{3s}	R^{4a}	R^{5dl}	R^{6b}	
N445	R^{1b}	\mathbb{R}^{3h}	R^{4e}	R^{5cq}	R^{6b}	30	N523	R^{1b}	\mathbb{R}^{3t}	R^{4b}	R^{5dl}	R^{6b}	
N446	R^{1b}	\mathbb{R}^{3s}	R^{4a}	R^{5cr}	R^{6b}	50	N524	R^{1b}	\mathbb{R}^{3g}	R^{4e}	R^{5dl}	R^{6b}	
N447	R^{1b}	\mathbb{R}^{3t}	R^{4b}	R^{5cr}	R^{6b}		N525	R^{1b}	\mathbb{R}^{3h}	R^{4e}	R^{5dl}	R^{6b}	
N448	R^{1b}	R^{3g}	R^{4e}	R^{5cr}	R^{6b}		N526	R^{1b}	\mathbb{R}^{3s}	R^{4a}	\mathbb{R}^{5dm}	R^{6b}	
N449	R^{1b}	R^{3h}	R^{4e}	R^{5cr}	R^{6b}		N527	R^{1b}	\mathbb{R}^{3t}	R^{4b}	R^{5dm}	R^{6b}	
N450	R^{1b}	\mathbb{R}^{3s}	R^{4a}	R^{5cs}	R^{6b}		N528	R^{1b}	R^{3g}	R^{4e}	R^{5dm}	R^{6b}	
N451	R^{1b}	\mathbb{R}^{3t}	R^{4b}	R^{5cs}	R^{6b}	35	N529	R^{1b}	\mathbb{R}^{3h}	R^{4e}	R^{5dm}	R^{6b}	
N452	R^{1b}	R^{3g}	R^{4e}	R ^{5cs}	R^{6b}		N530	R^{1b}	\mathbb{R}^{3s}	R ^{4a}	R ^{5dn}	R^{6b}	
N453	R^{1b}	\mathbb{R}^{3h}	R ^{4e}	R ^{5cs}	R^{6b}		N531	R^{1b}	\mathbb{R}^{3t}	R^{4b}	R ^{5dn}	R^{6b}	
N454	R^{1b}	R^{3s}	R^{4a} R^{4b}	R^{5ct} R^{5ct}	R^{6b} R^{6b}		N532	R^{1b}	R^{3g}	R^{4e}	R^{5dn}	R^{6b}	
N455	R^{1b} R^{1b}	R^{3t} R^{3g}	R^{4e}	R ^{5ct}	R^{6b}		N533 N534	R^{1b} R^{1b}	R^{3h} R^{3s}	R ^{4e} R ^{4a}	R^{5dn} R^{5do}	R^{6b} R^{6b}	
N456 N457	R^{1b}	\mathbb{R}^{3h}	R^{4e}	R ^{5ct}	R^{6b}		N534 N535	R^{1b}	R^{3t}	R^{4b}	R ^{5do}	R^{6b}	
N458	R^{1b}	R^{3s}	R^{4a}	R^{5cu}	R^{6b}	40	N536	R^{1b}	R^{3g}	R^{4e}	R^{5do}	R^{6b}	
N459	R^{1b}	R^{3t}	R^{4b}	R ^{5cu}	R^{6b}		N537	R^{1b}	\mathbb{R}^{3h}	R ^{4e}	R ^{5do}	R^{6b}	
N460	R^{1b}	R^{3g}	R ^{4e}	R ^{5cu}	R^{6b}		N538	R^{1b}	\mathbb{R}^{3s}	R^{4a}	R^{5dp}	R^{6b}	
N461	R^{1b}	\mathbb{R}^{3h}	R ^{4e}	R^{5cu}	R^{6b}		N539	R^{1b}	\mathbb{R}^{3t}	R^{4b}	R^{5dp}	R^{6b}	
N462	R^{1b}	\mathbb{R}^{3s}	R^{4a}	R^{5cv}	R^{6b}		N540	R^{1b}	R^{3g}	R^{4e}	R^{5dp}	R^{6b}	
N463	R^{1b}	\mathbb{R}^{3t}	R^{4b}	R ^{5cv}	R^{6b}		N541	\mathbb{R}^{1b}	\mathbb{R}^{3h}	R^{4e}	R^{5dp}	R^{6b}	
N464	R^{1b}	R^{3g}	R^{4e}	R^{5cv}	R^{6b}	45	N542	R^{1b}	\mathbb{R}^{3s}	R^{4a}	\mathbb{R}^{5dq}	R^{6b}	
N465	R^{1b}	\mathbb{R}^{3h}	R^{4e}	R^{5cv}	R^{6b}		N543	R^{1b}	R^{3t}	R^{4b}	\mathbb{R}^{5dq}	R^{6b}	
N466	R^{1b}	\mathbb{R}^{3s}	R^{4a}	R^{5cw}	R^{6b}		N544	R^{1b}	R^{3g}	R^{4e}	R^{5dq}	R^{6b}	
N467	R^{1b}	\mathbb{R}^{3t}	\mathbb{R}^{4b}	R^{5cw}	R^{6b}		N545	R^{1b}	\mathbb{R}^{3h}	R^{4e}	R^{5dq}	R^{6b}	
N468	R^{1b}	R^{3g}	R^{4e}	R^{5cw}	R^{6b}		N546	R^{1b}	\mathbb{R}^{3s}	R^{4a}	R^{5dr}	$R_{\epsilon_{b}}^{6b}$	
N469	R^{1b}	\mathbb{R}^{3h}	R ^{4e}	R ^{5cw}	R^{6b}		N547	R^{1b}	R^{3t}	R^{4b}	R^{5dr}	R^{6b}	
N470	R^{1b}	\mathbb{R}^{3s}	R^{4a}	R ^{5ex}	R^{6b}	50	N548	R^{1b}	\mathbb{R}^{3g}	R ^{4e}	R ^{5dr}	R^{6b}	
N471	${ m R}^{1b}$ ${ m R}^{1b}$	R^{3t}	R^{4b}	R ^{5ex}	R^{6b}		N549	R^{1b}	\mathbb{R}^{3h}	R^{4e}	R^{5dr}	R^{6b}	
N472	R^{1b} R^{1b}	R^{3g} R^{3h}	R^{4e}	R^{5cx} R^{5cx}	R ^{6b} R ^{6b}		N550	${ m R}^{1b} \ { m R}^{1b}$	R^{3s} R^{3t}	R^{4a}	R^{5ds} R^{5ds}	${ m R}^{6b}$ ${ m R}^{6b}$	
N473 N474	R^{1b}	\mathbb{R}^{3s}	R^{4e} R^{4a}	R^{5cy}	R^{6b}		N551 N552	R^{1b}	R ³ g	${ m R}^{4b} \ { m R}^{4e}$	R^{5ds} R^{5ds}	R^{6b}	
N474 N475	R^{1b}	R^{3t}	R^{4b}	R^{5cy}	R^{6b}		N552 N553	R^{1b}	R^{3h}	R^{4e}	R^{5ds}	R^{6b}	
N475 N476	R^{1b}	R^{3g}	R ^{4e}	R ^{5cy}	R^{6b}		N554	R^{1b}	\mathbb{R}^{3s}	R^{4a}	R ^{5dt}	R^{6b}	

37113	n 1 h	n 3h	D 40	n Sai	n.6h		37404	n 15	n 3 t	n.4h	n 5da	n.6h	
N413	R^{1b}	R^{3h}	R^{4e}	R^{5ci}	R^{6b}		N491	R^{1b}	R^{3t}	R^{4b}	R^{5dc}	R^{6b}	
N414	R^{1b}	\mathbb{R}^{3s}	R^{4a}	R^{5cj}	R^{6b}	5	N492	R^{1b}	\mathbb{R}^{3g}	R^{4e}	R^{5dc}	R^{6b}	
N415	\mathbb{R}^{1b}	\mathbb{R}^{3t}	\mathbb{R}^{4b}	R^{5cj}	R^{6b}		N493	\mathbb{R}^{1b}	\mathbb{R}^{3h}	\mathbb{R}^{4e}	R^{5dc}	R^{6b}	
					R^{6b}							R^{6b}	
N416	R^{1b}	R^{3g}	R^{4e}	R^{5cj}			N494	R^{1b}	\mathbb{R}^{3s}	R^{4a}	R^{5de}	Roo	
N417	R^{1b}	\mathbb{R}^{3h}	R^{4e}	R^{5cj}	R^{6b}		N495	R^{1b}	\mathbb{R}^{3t}	R^{4b}	R^{5de}	R^{6b}	
N418	\mathbb{R}^{1b}	\mathbb{R}^{3s}	\mathbb{R}^{4a}	\mathbb{R}^{5ck}	R^{6b}		N496	\mathbb{R}^{1b}	R^{3g}	\mathbb{R}^{4e}	R^{5de}	R^{6b}	
				R^{5ck}	R^{6b}					R ^{4e}		R^{6b}	
N419	R^{1b}	R^{3t}	R^{4b}				N497	R^{1b}	\mathbb{R}^{3h}		R^{5de}	R ^{cc}	
N420	R^{1b}	\mathbb{R}^{3g}	R^{4e}	R^{5ck}	R^{6b}	10	N498	R^{1b}	\mathbb{R}^{3s}	R^{4a}	R^{5df}	R^{6b}	
N421	\mathbb{R}^{1b}	\mathbb{R}^{3h}	R^{4e}	\mathbb{R}^{5ck}	R^{6b}		N499	\mathbb{R}^{1b}	\mathbb{R}^{3t}	\mathbb{R}^{4b}	R^{5df}	R^{6b}	
									D 3-4				
N422	R^{1b}	\mathbb{R}^{3s}	R^{4a}	R^{5cl}	R^{6b}		N500	R^{1b}	\mathbb{R}^{3g}	R^{4e}	R^{5df}	R^{6b}	
N423	R^{1b}	\mathbb{R}^{3t}	R^{4b}	R^{5cl}	R^{6b}		N501	R^{1b}	\mathbb{R}^{3h}	R^{4e}	R^{5df}	R^{6b}	
N424	R^{1b}	R^{3g}	R^{4e}	R ^{5cl}	R^{6b}		N502	R^{1b}	\mathbb{R}^{3s}	R^{4a}	R ^{5dg}	R^{6b}	
N425	R^{1b}	\mathbb{R}^{3h}	R^{4e}	R^{5cl}	R^{6b}		N503	R^{1b}	\mathbb{R}^{3t}	R^{4b}	R^{5dg}	R^{6b}	
N426	R^{1b}	\mathbb{R}^{3s}	R^{4a}	R^{5cm}	R^{6b}	1.5	N504	R^{1b}	\mathbb{R}^{3g}	R^{4e}	R^{5dg}	R^{6b}	
N427	R^{1b}	\mathbb{R}^{3t}	R^{4b}	R^{5cm}	R^{6b}	15	N505	\mathbb{R}^{1b}	\mathbb{R}^{3h}	R^{4e}	R^{5dg}	R^{6b}	
											R^{5dh}	n 6h	
N428	R^{1b}	\mathbb{R}^{3g}	R^{4e}	R^{5cm}	R^{6b}		N506	R^{1b}	\mathbb{R}^{3s}	R^{4a}	Roan	R^{6b}	
N429	R^{1b}	\mathbb{R}^{3h}	R^{4e}	R^{5cm}	R^{6b}		N507	R^{1b}	\mathbb{R}^{3t}	R^{4b}	R^{5dh}	R^{6b}	
N430	\mathbb{R}^{1b}	\mathbb{R}^{3s}	\mathbb{R}^{4a}	\mathbb{R}^{5cn}	R^{6b}		N508	\mathbb{R}^{1b}	\mathbb{R}^{3g}	R^{4e}	R^{5dh}	R^{6b}	
N431	R^{1b}	R^{3t}	R^{4b}	R^{5cn}	R^{6b}		N509	R^{1b}	\mathbb{R}^{3h}	R^{4e}	R^{5dh}	R^{6b}	
N432	R^{1b}	\mathbb{R}^{3g}	\mathbb{R}^{4e}	R^{5cn}	R^{6b}		N510	R^{1b}	\mathbb{R}^{3s}	R^{4a}	R^{5di}	R^{6b}	
N433	\mathbb{R}^{1b}	\mathbb{R}^{3h}	\mathbb{R}^{4e}	\mathbb{R}^{5cn}	R^{6b}	20	N511	\mathbb{R}^{1b}	\mathbb{R}^{3t}	\mathbb{R}^{4b}	R^{5di}	R^{6b}	
N434	R^{1b}	\mathbb{R}^{3s}	R^{4a}	R^{5co}	R^{6b}		N512	R^{1b}	R^{3g}	R^{4e}	R^{5di}	R^{6b}	
N435	R^{1b}	\mathbb{R}^{3t}	\mathbb{R}^{4b}	R^{5co}	R^{6b}		N513	R^{1b}	\mathbb{R}^{3h}	R^{4e}	R^{5di}	R^{6b}	
N436	\mathbb{R}^{1b}	\mathbb{R}^{3g}	\mathbb{R}^{4e}	R^{5co}	R^{6b}		N514	\mathbb{R}^{1b}	\mathbb{R}^{3s}	\mathbb{R}^{4a}	R^{5dj}	R^{6b}	
N437	R^{1b}	\mathbb{R}^{3h}	R^{4e}	R^{5co}	R^{6b}		N515	R^{1b}	R^{3t}	R^{4b}	R^{5dj}	R^{6b}	
N438	R^{1b}	\mathbb{R}^{3s}	R^{4a}	R^{5cp}	R^{6b}		N516	R^{1b}	\mathbb{R}^{3g}	R^{4e}	R^{5dj}	R^{6b}	
N439	\mathbb{R}^{1b}	\mathbb{R}^{3t}	\mathbb{R}^{4b}	R^{5cp}	R^{6b}	25	N517	\mathbb{R}^{1b}	\mathbb{R}^{3h}	\mathbb{R}^{4e}	R^{5dj}	R^{6b}	
						23							
N440	R^{1b}	\mathbb{R}^{3g}	R^{4e}	R^{5cp}	R^{6b}		N518	R^{1b}	\mathbb{R}^{3s}	R^{4a}	R^{5dk}	R^{6b}	
N441	R^{1b}	\mathbb{R}^{3h}	R^{4e}	R^{5cp}	R^{6b}		N519	R^{1b}	\mathbb{R}^{3t}	R^{4b}	R^{5dk}	R^{6b}	
N442	R^{1b}	\mathbb{R}^{3s}	R^{4a}	R^{5cq}	R^{6b}		N520	R^{1b}	R^{3g}	R^{4e}	R^{5dk}	R^{6b}	
											1X.		
N443	R^{1b}	\mathbb{R}^{3t}	R^{4b}	R^{5cq}	R^{6b}		N521	R^{1b}	\mathbb{R}^{3h}	\mathbb{R}^{4e}	R^{5dk}	R^{6b}	
N444	R^{1b}	\mathbb{R}^{3g}	R^{4e}	R^{5cq}	R^{6b}		N522	R^{1b}	\mathbb{R}^{3s}	R^{4a}	R^{5dl}	R^{6b}	
N445	R^{1b}	\mathbb{R}^{3h}	R^{4e}	R^{5cq}	R^{6b}	20	N523	R^{1b}	R^{3t}	R^{4b}	R^{5dl}	R^{6b}	
						30							
N446	R^{1b}	\mathbb{R}^{3s}	R^{4a}	R^{5cr}	R^{6b}		N524	R^{1b}	R^{3g}	R^{4e}	R^{5dl}	R^{6b}	
N447	R^{1b}	\mathbb{R}^{3t}	R^{4b}	R^{5cr}	R^{6b}		N525	R^{1b}	\mathbb{R}^{3h}	R^{4e}	R^{5dl}	R^{6b}	
N448	R^{1b}	R^{3g}	R^{4e}	R^{5cr}	R^{6b}		N526	R^{1b}	\mathbb{R}^{3s}	R^{4a}	R^{5dm}	R^{6b}	
N449	R^{1b}	\mathbb{R}^{3h}	\mathbb{R}^{4e}	R^{5cr}	R^{6b}		N527	R^{1b}	R^{3t}	R^{4b}	R^{5dm}	R^{6b}	
N450	R^{1b}	\mathbb{R}^{3s}	R^{4a}	R^{5cs}	R^{6b}		N528	R^{1b}	R^{3g}	R^{4e}	R^{5dm}	R^{6b}	
N451	R^{1b}	R^{3t}	R^{4b}	R ^{5cs}	R^{6b}		N529	R^{1b}	\mathbb{R}^{3h}	R^{4e}	R^{5dm}	R^{6b}	
				IX		35							
N452	R^{1b}	R^{3g}	\mathbb{R}^{4e}	R^{5cs}	R^{6b}		N530	R^{1b}	\mathbb{R}^{3s}	R^{4a}	R^{5dn}	R^{6b}	
N453	R^{1b}	\mathbb{R}^{3h}	R^{4e}	R^{5cs}	R^{6b}		N531	R^{1b}	\mathbb{R}^{3t}	\mathbb{R}^{4b}	\mathbb{R}^{5dn}	R^{6b}	
N454	R^{1b}	\mathbb{R}^{3s}	R^{4a}	R ^{5ct}	R^{6b}		N532	R^{1b}	R^{3g}	R^{4e}	R^{5dn}	R^{6b}	
				T. Set									
N455	R^{1b}	\mathbb{R}^{3t}	R^{4b}	R^{5ct}	R^{6b}		N533	R^{1b}	\mathbb{R}^{3h}	R^{4e}	R^{5dn}	R^{6b}	
N456	R^{1b}	\mathbb{R}^{3g}	R^{4e}	R^{5ct}	R^{6b}		N534	R^{1b}	\mathbb{R}^{3s}	R^{4a}	R^{5do}	R^{6b}	
N457	R^{1b}	\mathbb{R}^{3h}	\mathbb{R}^{4e}	R ^{5ct}	R^{6b}		N535	\mathbb{R}^{1b}	\mathbb{R}^{3t}	R^{4b}	R^{5do}	R^{6b}	
	- 1 b			TC		40					- 5do		
N458	R^{1b}	\mathbb{R}^{3s}	R^{4a}	R^{5cu}	R^{6b}	70	N536	R^{1b}	R^{3g}	R^{4e}	R^{5do}	R^{6b}	
N459	R^{1b}	\mathbb{R}^{3t}	R^{4b}	R^{5cu}	R^{6b}		N537	R^{1b}	\mathbb{R}^{3h}	R^{4e}	R^{5do}	R^{6b}	
N460	R^{1b}	R^{3g}	R^{4e}	R^{5cu}	R^{6b}		N538	R^{1b}	\mathbb{R}^{3s}	R^{4a}	R^{5dp}	R^{6b}	
N461	R^{1b}	\mathbb{R}^{3h}	R^{4e}	R^{5cu}	R^{6b}		N539	R^{1b}	\mathbb{R}^{3t}	R^{4b}	R^{5dp}	R^{6b}	
N462	R^{1b}	\mathbb{R}^{3s}	R^{4a}	R^{5cv}	R^{6b}		N540	R^{1b}	\mathbb{R}^{3g}	R^{4e}	R^{5dp}	R^{6b}	
N463	R^{1b}	R^{3t}	R^{4b}	R^{5cv}	R^{6b}		N541	R^{1b}	\mathbb{R}^{3h}	R ⁴ €	R^{5dp}	R^{6b}	
												K	
N464	R^{1b}	\mathbb{R}^{3g}	R^{4e}	R^{5cv}	R^{6b}	45	N542	R^{1b}	\mathbb{R}^{3s}	R^{4a}	R^{5dq}	R^{6b}	
N465	R^{1b}	\mathbb{R}^{3h}	\mathbb{R}^{4e}	R^{5cv}	R^{6b}		N543	R^{1b}	\mathbb{R}^{3t}	R^{4b}	R^{5dq}	R^{6b}	
N466	R^{1b}	\mathbb{R}^{3s}	R^{4a}	R ^{5cw}	R^{6b}		N544	R^{1b}	\mathbb{R}^{3g}	R^{4e}	R^{5dq}	R^{6b}	
	- 12												
N467	R^{1b}	\mathbb{R}^{3t}	R^{4b}	R^{5cw}	R^{6b}		N545	\mathbb{R}^{1b}	\mathbb{R}^{3h}	R^{4e}	R^{5dq}	R^{6b}	
N468	R^{1b}	\mathbb{R}^{3g}	R^{4e}	R^{5cw}	R^{6b}		N546	R^{1b}	\mathbb{R}^{3s}	\mathbb{R}^{4a}	R^{5dr}	R^{6b}	
N469	R^{1b}	\mathbb{R}^{3h}	R^{4e}	R^{5cw}	R^{6b}		N547	R^{1b}	\mathbb{R}^{3t}	R^{4b}	R^{5dr}	R^{6b}	
N470	R^{1b}	R^{3s}	R^{4a}	R ^{5cx}	R^{6b}		N548	R^{1b}	R^{3g}	R^{4e}	R^{5dr}	R^{6b}	
	K -					50							
N471	R^{1b}	\mathbb{R}^{3t}	R^{4b}	R^{5cx}	R^{6b}		N549	\mathbb{R}^{1b}	\mathbb{R}^{3h}	R^{4e}	R^{5dr}	R^{6b}	
N472	R^{1b}	\mathbb{R}^{3g}	R^{4e}	R^{5cx}	R^{6b}		N550	R^{1b}	\mathbb{R}^{3s}	\mathbb{R}^{4a}	R^{5ds}	R^{6b}	
N473	R^{1b}	R^{3h}	R^{4e}	R ^{5cx}	R^{6b}		N551	R^{1b}	R^{3t}	R^{4b}	R ^{5ds}	R^{6b}	
N474	R^{1b}	\mathbb{R}^{3s}	R^{4a}	R^{5cy}	R^{6b}		N552	R^{1b}	R^{3g}	\mathbb{R}^{4e}	R^{5ds}	R^{6b}	
N475	R^{1b}	\mathbb{R}^{3t}	R^{4b}	R^{5cy}	R^{6b}		N553	R^{1b}	\mathbb{R}^{3h}	\mathbb{R}^{4e}	R^{5ds}	R^{6b}	
N476	R^{1b}	R^{3g}	R^{4e}	R^{5cy}	R^{6b}		N554	R^{1b}	\mathbb{R}^{3s}	R^{4a}	R ^{5dt}	R^{6b}	
						55							
N477	R^{1b}	\mathbb{R}^{3h}	R^{4e}	R^{5cy}	R^{6b}		N555	R^{1b}	R^{3t}	R^{4b}	R^{5dt}	R^{6b}	
N478	R^{1b}	\mathbb{R}^{3s}	R^{4a}	R^{5cz}	R^{6b}		N556	R^{1b}	R^{3g}	\mathbb{R}^{4e}	R^{5dt}	R^{6b}	
N479	R^{1b}	\mathbb{R}^{3t}	R^{4b}	R ^{5cz}	R^{6b}		N557	R^{1b}	\mathbb{R}^{3h}	R^{4e}	R^{5dt}	R^{6b}	
	R^{1b}			R ^{5cz}	R^{6b}						R^{5du}	R^{6b}	
N480		R^{3g}	R^{4e}				N558	R_{ib}^{1b}	R^{3s}	R^{4a}	K	K	
N481	R^{1b}	\mathbb{R}^{3h}	R^{4e}	R^{5cz}	R^{6b}		N559	\mathbb{R}^{1b}	\mathbb{R}^{3t}	R^{4b}	R^{5du}	R^{6b}	
N482	R^{1b}	\mathbb{R}^{3s}	R^{4a}	R^{5da}	R^{6b}		N560	R^{1b}	R^{3g}	R^{4e}	R^{5du}	R^{6b}	
						60							
N483	R^{1b}	R_{2}^{3t}	R^{4b}	R^{5da}	R^{6b}	0.0	N561	R^{1b}	R_{2}^{3h}	R^{4e}	R^{5du}	R^{6b}	
N484	R^{1b}	R^{3g}	R^{4e}	R^{5da}	R^{6b}		N562	R^{1b}	\mathbb{R}^{3s}	\mathbb{R}^{4a}	R^{5dv}	R^{6b}	
N485	R^{1b}	\mathbb{R}^{3h}	R^{4e}	R^{5da}	R^{6b}		N563	R^{1b}	R^{3t}	R^{4b}	R^{5dv}	R^{6b}	
N486	R^{1b}	\mathbb{R}^{3s}	R^{4a}	R^{5db}	R^{6b}		N564	R^{1b}	R^{3g}	R^{4e}	R^{5dv}	R^{6b}	
N487	R^{1b}	\mathbb{R}^{3t}	\mathbb{R}^{4b}	R^{5db}	R^{6b}		N565	R^{1b}	\mathbb{R}^{3h}	\mathbb{R}^{4e}	R^{5dv}	R^{6b}	
N488	R^{1b}	R^{3g}	R ⁴ €	R^{5db}	R^{6b}		N566	R^{1b}	\mathbb{R}^{3s}	R^{4a}	R ^{5dw}	R^{6b}	
						65							
N489	R^{1b}	\mathbb{R}^{3h}	R^{4e}	R^{5db}	R^{6b}	0.5	N567	R^{1b}	\mathbb{R}^{3t}	R^{4b}	R^{5dw}	R^{6b}	
N490	R^{1b}	\mathbb{R}^{3s}	R^{4a}	R^{5dc}	R^{6b}		N568	\mathbb{R}^{1b}	\mathbb{R}^{3g}	\mathbb{R}^{4e}	R^{5dw}	R^{6b}	
*****									•				

88

THE	T 3 T	
TARL	\vdash	-continued

		17 11111	TV COIIIII	aca					17 10 10 1	TV COILLIII	ucu	
	R_1	R_3	R ₄	R ₅	R_6			R_1	R_3	R_4	R ₅	R ₆
NE (0	R ^{1b}	\mathbb{R}^{3h}	R ^{4e}	R ^{5dw}	R ^{6b}		NIC 47	R^{1b}	\mathbb{R}^{3t}	R ^{4b}	R^{bet}	R^{6b}
N569 N570	R ¹⁶	R^{3s}	R^{4a}	R^{5dx}	R^{6b}	5	N647 N648	R^{1b}	R ^{3g}	R ^{4e}	R ^{bet}	R^{6b}
N570 N571	R^{1b}	R^{3t}	R^{4b}	R^{5dx}	R^{6b}	3	N649	R^{1b}	R^{3h}	R^{4e}	R ^{bet}	R ^{6b}
N571 N572	R^{1b}	R ^{3g}	R^{4e}	R^{5dx}	R^{6b}		N650	R^{1b}	R^{3s}	R^{4a}	R ^{5eu}	R^{6b}
N572 N573	R^{1b}	\mathbb{R}^{3h}	R^{4e}	R^{5dx}	R^{6b}		N651	R^{1b}	R^{3t}	R^{4b}	R ^{5eu}	R^{6b}
N574	R^{1b}	R^{3s}	R^{4a}	R ^{5ea}	R^{6b}		N652	R^{1b}	R^{3g}	R^{4e}	R ^{5eu}	R ^{6b}
N575	R^{1b}	\mathbb{R}^{3t}	R^{4b}	R ^{5ea}	R^{6b}		N653	R^{1b}	\mathbb{R}^{3h}	R ^{4e}	R ^{5eu}	R^{6b}
N576	R^{1b}	R ^{3g}	R^{4e}	R ^{5ea}	R^{6b}	10	N654	R^{1b}	R^{3s}	R^{4a}	R ^{5ev}	R^{6b}
N577	R^{1b}	\mathbb{R}^{3h}	R^{4e}	R ^{5ea}	R^{6b}	10	N655	R^{1b}	R^{3t}	R^{4b}	R ^{5ev}	R^{6b}
N578	R^{1b}	\mathbb{R}^{3s}	R^{4a}	R ^{5eb}	R^{6b}		N656	R^{1b}	\mathbb{R}^{3g}	R^{4e}	R ^{5ev}	R^{6b}
N579	R^{1b}	\mathbb{R}^{3t}	R^{4b}	R^{5eb}	R^{6b}		N657	R^{1b}	\mathbb{R}^{3h}	R^{4e}	R^{5ev}	R^{6b}
N580	R^{1b}	\mathbb{R}^{3g}	R^{4e}	R^{5eb}	R^{6b}		N658	R^{1b}	\mathbb{R}^{3s}	R^{4a}	R^{5ex}	R^{6b}
N581	R^{1b}	\mathbb{R}^{3h}	R^{4e}	\mathbb{R}^{5eb}	R^{6b}		N659	R^{1b}	\mathbb{R}^{3t}	R^{4b}	R ^{5ex}	R^{6b}
N582	R^{1b}	\mathbb{R}^{3s}	R^{4a}	R^{5ec}	R^{6b}	1.5	N660	R^{1b}	\mathbb{R}^{3g}	R^{4e}	R^{5ex}	R^{6b}
N583	R^{1b}	\mathbb{R}^{3t}	R^{4b}	R^{5ec}	R^{6b}	15	N661	R^{1b}	\mathbb{R}^{3h}	R^{4e}	R^{5ex}	R^{6b}
N584	R^{1b}	\mathbb{R}^{3g}	R^{4e}	R^{5ec}	R^{6b}		N662	\mathbb{R}^{1b}	\mathbb{R}^{3s}	R^{4a}	R^{5ey}	R^{6b}
N585	R^{1b}	\mathbb{R}^{3h}	R^{4e}	R^{5ec}	R^{6b}		N663	R^{1b}	\mathbb{R}^{3t}	R^{4b}	R^{5ey}	R^{6b}
N586	R^{1b}	\mathbb{R}^{3s}	R^{4a}	R^{5ed}	R^{6b}		N664	\mathbb{R}^{1b}	\mathbb{R}^{3g}	\mathbb{R}^{4e}	R^{5ey}	R^{6b}
N587	R^{1b}	\mathbb{R}^{3t}	R^{4b}	R^{5ed}	R^{6b}		N665	\mathbb{R}^{1b}	\mathbb{R}^{3h}	R^{4e}	R^{5ey}	R^{6b}
N588	\mathbb{R}^{1b}	\mathbb{R}^{3g}	R^{4e}	R^{5ed}	R^{6b}		N666	\mathbb{R}^{1b}	\mathbb{R}^{3s}	R^{4a}	R^{5ez}	R^{6b}
N589	\mathbb{R}^{1b}	\mathbb{R}^{3h}	R^{4e}	R^{5ed}	R^{6b}	20	N667	\mathbb{R}^{1b}	\mathbb{R}^{3t}	R^{4b}	R^{5ez}	R^{6b}
N590	\mathbb{R}^{1b}	\mathbb{R}^{3s}	R^{4a}	R^{5ef}	R^{6b}		N668	\mathbb{R}^{1b}	\mathbb{R}^{3g}	\mathbb{R}^{4e}	R ^{5ez}	R^{6b}
N591	\mathbb{R}^{1b}	\mathbb{R}^{3t}	R^{4b}	R^{5ef}	R^{6b}		N669	\mathbb{R}^{1b}	\mathbb{R}^{3h}	\mathbb{R}^{4e}	R ^{5ez}	R^{6b}
N592	R^{1b}	\mathbb{R}^{3g}	R^{4e}	R^{5ef}	R^{6b}		N670	R^{1b}	\mathbb{R}^{3s}	R^{4a}	R^{5fa}	R^{6b}
N593	\mathbb{R}^{1b}	\mathbb{R}^{3h}	R^{4e}	R ^{5ef}	R^{6b}		N671	R^{1b}	R^{3t}	R^{4b}	R^{5fa}	R ^{6b}
N594	R^{1b}	\mathbb{R}^{3s}	R^{4a}	R^{5eg}	R^{6b}		N672	R^{1b}	\mathbb{R}^{3g}	R^{4e}	R^{5fa}	R^{6b}
N595	R^{1b}	\mathbb{R}^{3t}	R^{4b}	R^{5eg}	R^{6b}	25	N673	R^{1b}	\mathbb{R}^{3h}	R^{4e}	R^{5fa}	R^{6b}
N596	R^{1b}	\mathbb{R}^{3g}	R^{4e}	R^{5eg}	R^{6b}		N674	R^{1b}	\mathbb{R}^{3s}	R^{4a}	R^{5fb}	R^{6b}
N597	R^{1b}	\mathbb{R}^{3h}	R^{4e}	R^{5eg}	R^{6b}		N675	R^{1b}	R^{3t}	R^{4b}	R^{5fb}	R^{6b}
N598	R^{1b}	\mathbb{R}^{3s}	R^{4a}	R^{5eh}	R^{6b}		N676	R^{1b}	R^{3g}	R^{4e}	R^{5fb}	R^{6b}
N599	R^{1b}	\mathbb{R}^{3t}	R^{4b}	R ^{5eh}	R^{6b}		N677	R^{1b}	\mathbb{R}^{3h}	R^{4e}	R^{5fb}	R^{6b}
N600	R^{1b}	R^{3g}	R^{4e}	R ^{5eh}	R^{6b}		N678	R^{1b}	\mathbb{R}^{3s}	R^{4a}	R^{5fc}	R^{6b}
N601	R^{1b}	R^{3h}	R^{4e}	R^{5eh}	R^{6b}	30	N679	R^{1b}	R^{3t}	R^{4b}	R^{5fc}	R^{6b}
N602	R^{1b}	\mathbb{R}^{3s}	R^{4a}	R^{5ei}	R^{6b}		N680	R^{1b}	R^{3g}	R^{4e}	R^{5fc}	R^{6b}
N603	R^{1b}	\mathbb{R}^{3t}	R^{4b}	R^{5ei}	R^{6b}		N681	R^{1b}	\mathbb{R}^{3h}	\mathbb{R}^{4e}	R^{5fc}	R^{6b}
N604	R^{1b}	R^{3g}	R^{4e}	R^{5ei}	R^{6b}		N682	R^{1b}	\mathbb{R}^{3s}	R^{4a}	R^{5fd}	R^{6b}
N605	R^{1b}	\mathbb{R}^{3h}	R^{4e}	R^{5ei}	R^{6b}		N683	R^{1b}	\mathbb{R}^{3t}	R^{4b}	R ^{5fd}	R^{6b}
N606	R^{1b}	\mathbb{R}^{3s}	R^{4a}	R^{5ej}	R ^{6b}		N684	R^{1b}	R^{3g}	R^{4e}	R^{5fd}	R^{6b}
N607	R^{1b}	\mathbb{R}^{3t}	R^{4b}	R^{5ej}	R^{6b}	35	N685	R^{1b}	R^{3h}	R^{4e}	R^{5fd}	R^{6b}
N608	R^{1b}	R^{3g}	\mathbb{R}^{4e}	R^{5ej}	R^{6b}		N686	R_{II}^{1b}	\mathbb{R}^{3s}	R^{4a}	R ^{5fe}	R ^{6b}
N609	R^{1b}	\mathbb{R}^{3h}	R^{4e}	R^{5ej}	R^{6b}		N687	R^{1b}	\mathbb{R}^{3t}	R^{4b}	R^{5fe}	R ^{6b}
N610	R^{1b}	\mathbb{R}^{3s}	R^{4a}	R^{5ek}	R^{6b}		N688	R^{1b}	R^{3g}	R^{4e}	R^{5fe}	R ^{6b}
N611	R ^{1b}	\mathbb{R}^{3t}	R ^{4b}	R ^{5ej}	R^{6b}		N689	R^{1b}	\mathbb{R}^{3h}	R ^{4e}	R ^{5fe}	R^{6b}
N612	R^{1b}	R^{3g}	R ^{4e}	R^{5ej}	R^{6b}		N690	R^{1b}	\mathbb{R}^{3s}	R^{4a}	R ^{5fg}	R^{6b} R^{6b}
N613	R^{1b} R^{1b}	R^{3h} R^{3s}	R ^{4e} R ^{4a}	R ^{5ej} R ^{5el}	R^{6b} R^{6b}	40	N691	R^{1b} R^{1b}	R^{3t}	${ m R}^{4b}$ ${ m R}^{4e}$	R ^{5fg} R ^{5fg}	R^{6b}
N614	R^{1b}	\mathbb{R}^{3t}	R^{4b}	R ^{5el}	R^{6b}		N692	R^{1b}	R^{3g} R^{3h}		R ^{5fg}	R^{6b}
N615	R^{1b}	R ^{3g}	R ^{4e}	R ^{5el}	R^{6b}		N693	R^{1b}	R^{3s}	R ^{4e} R ^{4a}	R^{5fh}	R^{6b}
N616	R^{1b}	\mathbb{R}^{3h}	R ^{4e}	R ^{5el}	R^{6b}		N694	R^{1b}	R^{3t}	R^{4b}	R^{5fh}	R^{6b}
N617	R^{1b}	\mathbb{R}^{3s}	R^{4a}	R ^{5em}	R^{6b}		N695	R^{1b}	R^{3g}	R ^{4e}	R^{5fh}	R^{6b}
N618 N619	R^{1b}	\mathbb{R}^{3t}	R^{4b}	R ^{5em}	R^{6b}		N696 N697	R^{1b}	R^{3h}	R ^{4e}	R^{5fh}	R^{6b}
N620	R^{1b}	R ^{3g}	R ^{4e}	R ^{5em}	R^{6b}	45	N698	R^{1b}	\mathbb{R}^{3s}	R^{4a}	R^{5fi}	R ^{6b}
N620 N621	R^{1b}	\mathbb{R}^{3h}	R^{4e}	R ^{5em}	R^{6b}	73	N699	R^{1b}	R^{3t}	R^{4b}	R^{5fi}	R ^{6b}
N621 N622	R^{1b}	R^{3s}	R^{4a}	R ^{5en}	R^{6b}		N700	R^{1b}	R^{3g}	R ⁴ e	R ⁵ fi	R^{6b}
N623	R^{1b}	R^{3t}	R^{4b}	R^{5en}	R^{6b}		N700	R^{1b}	\mathbb{R}^{3h}	R ^{4e}	R^{5fi}	R^{6b}
N624	R^{1b}	\mathbb{R}^{3g}	R^{4e}	R^{5en}	R^{6b}		N701	R^{1b}	\mathbb{R}^{3s}	R^{4a}	R ⁵	R^{6b}
N625	R^{1b}	R^{3h}	R^{4e}	R ^{5en}	R^{6b}		N702	R^{1b}	R^{3t}	R^{4b}	R ⁵	R^{6b}
N626	R^{1b}	\mathbb{R}^{3s}	R^{4a}	R ^{5eo}	R^{6b}	50	N704	R^{1b}	R^{3g}	R^{4e}	R ⁵	R^{6b}
N627	R^{1b}	\mathbb{R}^{3t}	R^{4b}	R ^{5eo}	R^{6b}	50	N705	R^{1b}	\mathbb{R}^{3h}	R^{4e}	R^{5f}	R^{6b}
N628	R^{1b}	\mathbb{R}^{3g}	R^{4e}	R ^{5eo}	R^{6b}		N706	R^{1b}	R^{3s}	R^{4a}	R^{5fk}	R^{6b}
N629	R^{1b}	R^{3h}	R^{4e}	R ^{5eo}	R^{6b}		N707	R^{1b}	R^{3t}	R^{4b}	R^{5fk}	R^{6b}
N630	R^{1b}	\mathbb{R}^{3s}	R^{4a}	R^{5ep}	R^{6b}		N708	R^{1b}	R ^{3g}	R^{4e}	R ^{5fk}	R^{6b}
N631	R^{1b}	R^{3t}	R^{4b}	R^{5ep}	R^{6b}		N709	R^{1b}	R^{3h}	R ^{4e}	R^{5fk}	R^{6b}
N632	R^{1b}	\mathbb{R}^{3g}	R^{4e}	R^{5ep}	R^{6b}		N710	R^{1b}	\mathbb{R}^{3s}	R^{4a}	R ⁵ /1	R^{6b}
N633	R^{1b}	\mathbb{R}^{3h}	R^{4e}	R^{5ep}	R^{6b}	55	N711	R^{1b}	R ³ t	R^{4b}	R ^{5fl}	R^{6b}
N634	R^{1b}	\mathbb{R}^{3s}	R^{4a}	R^{5eq}	R^{6b}		N712	R^{1b}	R^{3g}	R^{4e}	R^{5fl}	R^{6b}
N635	R^{1b}	R^{3t}	R^{4b}	R^{5eq}	R^{6b}		N713	R^{1b}	R^{3h}	R^{4e}	R ⁵ /	R^{6b}
N636	R^{1b}	\mathbb{R}^{3g}	R^{4e}	R^{5eq}	R^{6b}		N714	R^{1b}	R^{3s}	R^{4a}	R^{5fin}	R^{6b}
N637	R^{1b}	\mathbb{R}^{3h}	R^{4e}	R^{5eq}	R^{6b}		N715	R^{1b}	R^{3t}	R^{4b}	R^{5fm}	R^{6b}
N638	R^{1b}	\mathbb{R}^{3s}	R^{4a}	R^{5er}	R^{6b}		N716	R^{1b}	R^{3g}	\mathbb{R}^{4e}	R^{5fm}	R^{6b}
N639	R^{1b}	\mathbb{R}^{3t}	R^{4b}	R^{ber}	R^{6b}	60	N717	R^{1b}	R^{3h}	R^{4e}	R ^{5fm}	R^{6b}
N640	R^{1b}	R^{3g}	R^{4e}	R ^{ber}	R^{6b}		N718	R^{1b}	R^{3s}	R^{4a}	R^{5fn}	R^{6b}
N641	R^{1b}	\mathbb{R}^{3h}	R^{4e}	R^{ber}	R^{6b}		N719	R^{1b}	R^{3t}	R^{4b}	R^{5fn}	R^{6b}
N642	R^{1b}	\mathbb{R}^{3s}	R^{4a}	R^{5es}	R^{6b}		N720	R^{1b}	R^{3g}	R^{4e}	R^{5fn}	R^{6b}
N643	R^{1b}	\mathbb{R}^{3t}	R^{4b}	R^{5es}	R^{6b}		N721	R^{1b}	\mathbb{R}^{3h}	\mathbb{R}^{4e}	R^{5fn}	R^{6b}
N644	R^{1b}	\mathbb{R}^{3g}	R^{4e}	R^{5es}	R^{6b}		N722	R^{1b}	\mathbb{R}^{3s}	\mathbb{R}^{4a}	R^{5fo}	R^{6b}
N645	R^{1b}	\mathbb{R}^{3h}	R^{4e}	\mathbb{R}^{5es}	R^{6b}	65	N723	R^{1b}	\mathbb{R}^{3t}	R^{4b}	R^{5fo}	R^{6b}
N646	R^{1b}	\mathbb{R}^{3s}	R^{4a}	R^{bet}	R^{6b}		N724	R^{1b}	R^{3g}	R^{4e}	R ⁵ 6	R^{6b}
									-			

S	pec	ific	cc	m	ıρc	un	d	
ic	con	npc	un	d	se	lect	te	(
	4	-		4			_	

90

	R_1	R_3	R_4	R_5	R_6
N725	R^{1b}	\mathbb{R}^{3h}	R^{4e}	R^{5fo}	R^{6b}
N726	R^{1b}	\mathbb{R}^{3s}	R^{4a}	R^{5fp}	R^{6b}
N727	R^{1b}	\mathbb{R}^{3t}	R^{4b}	R^{5fp}	R^{6b}
N728	R^{1b}	R^{3g}	R^{4e}	R^{5fp}	R^{6b}
N729	R^{1b}	\mathbb{R}^{3h}	R^{4e}	R^{5fp}	R^{6b}
N730	R^{1b}	\mathbb{R}^{3s}	R^{4a}	R^{5fq}	R^{6b}
N731	R^{1b}	\mathbb{R}^{3t}	R^{4b}	R^{5fq}	R^{6b}
N732	R^{1b}	R^{3g}	R^{4e}	R^{5fq}	R^{6b}
N733	R^{1b}	\mathbb{R}^{3h}	\mathbb{R}^{4e}	R^{5fq}	R^{6b}
N734	R^{1b}	\mathbb{R}^{3s}	R^{4a}	R^{5fr}	R^{6b}
N735	R^{1b}	\mathbb{R}^{3t}	R^{4b}	R ^{5fr}	R^{6b}
N736	R^{1b}	R^{3g}	R^{4e}	R ^{5fr}	R^{6b}
N737	R^{1b}	\mathbb{R}^{3h}	\mathbb{R}^{4e}	R^{5fr}	R^{6b}
N738	R^{1b}	\mathbb{R}^{3s}	R^{4a}	$\mathbb{R}^{5f\hat{s}}$	R^{6b}
N739	R^{1b}	\mathbb{R}^{3t}	R^{4b}	$R^{5f\hat{s}}$	R^{6b}
N740	R^{1b}	\mathbb{R}^{3g}	R^{4e}	$R^{5\hat{f}s}$	R^{6b}
N741	R^{1b}	\mathbb{R}^{3h}	R^{4e}	$R^{5f\hat{s}}$	R^{6b}
N742	R^{1b}	\mathbb{R}^{3s}	R^{4a}	R^{5ft}	R^{6b}
N743	R^{1b}	\mathbb{R}^{3t}	R^{4b}	$R^{5\hat{f}t}$	R^{6b}
N744	R^{1b}	\mathbb{R}^{3g}	R^{4e}	$R^{5\hat{f}t}$	R^{6b}
N745	R^{1b}	\mathbb{R}^{3h}	R^{4e}	R^{5ft}	R^{6b}
N746	R^{1b}	\mathbb{R}^{3s}	R^{4a}	R^{5fu}	R^{6b}
N747	R^{1b}	\mathbb{R}^{3t}	R^{4b}	R^{5fu}	R^{6b}
N748	R^{1b}	\mathbb{R}^{3g}	R^{4e}	R^{5fu}	R^{6b}
N749	R^{1b}	\mathbb{R}^{3h}	R^{4e}	R^{5fu}	R^{6b}
N750	R^{1b}	\mathbb{R}^{3s}	R^{4a}	R^{5fv}	R^{6b}
N751	\mathbb{R}^{1b}	\mathbb{R}^{3t}	R^{4b}	R ^{5fv}	R^{6b}
N752	\mathbb{R}^{1b}	\mathbb{R}^{3g}	R^{4e}	R ^{5fv}	R^{6b}
N753	R^{1b}	\mathbb{R}^{3h}	R^{4e}	R ^{5fv}	R^{6b}
N754	R^{1b}	\mathbb{R}^{3s}	R^{4a}	R^{5fiv}	R^{6b}
N755	R^{1b}	\mathbb{R}^{3t}	R^{4b}	R ^{5fiv}	R^{6b}
N756	R^{1b}	\mathbb{R}^{3g}	R^{4e}	R^{5fiv}	R^{6b}
N757	R^{1b}	\mathbb{R}^{3h}	R^{4e}	R ^{5fw}	R^{6b}

Compounds of formula I as well as intermediates and reagents used can be prepared by the methods herein and as described in WO2008/101682 as well as further methods known to a skilled chemist in a variety of ways, or they are commercially available.

In a further preferred embodiment the component A is a specific compound selected from Tables 1 to 164, a specific compound selected from P.1 to P.372 or a specific compound 40 selected from Q.001 to Q.454 and the component B is Chlorothalonil. In a further preferred embodiment the component A is a specific compound selected from Tables 1 to 164, a specific compound selected from P.1 to P.372 or a specific compound selected from Q.001 to Q.454 and the component 45 B is Fludioxonil. In a further preferred embodiment the component A is a specific compound selected from Tables 1 to 164, a specific compound selected from P.1 to P.372 or a specific compound selected from Q.001 to Q.454 and the component B is Cyprodinil. In a further preferred embodi- 50 ment the component A is a specific compound selected from Tables 1 to 164, a specific compound selected from P.1 to P.372 or a specific compound selected from Q.001 to Q.454 and the component B is Fenpropidin. In a further preferred embodiment the component A is a specific compound 55 selected from Tables 1 to 164, a specific compound selected from P.1 to P.372 or a specific compound selected from Q.001 to Q.454 and the component B is Mandipropamid. In a further preferred embodiment the component A is a specific compound selected from Tables 1 to 164, a specific compound 60 selected from P.1 to P.372 or a specific compound selected from Q.001 to Q.454 and the component B is Fluazinam. In a further preferred embodiment the component A is a specific compound selected from Tables 1 to 164, a specific compound selected from P.1 to P.372 or a specific compound 65 selected from Q.001 to Q.454 and the component B is Procymedone. In a further preferred embodiment the component

A is a selected from Tables 1 to 164, a specifi ed from P.1 to P.372 or a specific compound selected from Q.001 to Q.454 and the component B is Carbendazim. In a further preferred embodiment the component A is a specific compound selected from Tables 1 to 164, a specific compound selected from P.1 to P.372 or a specific compound selected from Q.001 to Q.454 and the component B is Abamectin. In a further preferred embodiment the component A is a specific compound selected from 10 Tables 1 to 164, a specific compound selected from P.1 to P.372 or a specific compound selected from Q.001 to Q.454 and the component B is Clothianidin. In a further preferred embodiment the component A is a specific compound selected from Tables 1 to 164, a specific compound selected 15 from P.1 to P.372 or a specific compound selected from Q.001 to Q.454 and the component B is Emamectin benzoate. In a further preferred embodiment the component A is a specific compound selected from Tables 1 to 164, a specific compound selected from P.1 to P.372 or a specific compound 20 selected from O.001 to O.454 and the component B is Imidacloprid. In a further preferred embodiment the component A is a specific compound selected from Tables 1 to 164, a specific compound selected from P.1 to P.372 or a specific compound selected from Q.001 to Q.454 and the component 25 B is Tefluthrin. In a further preferred embodiment the component A is a specific compound selected from Tables 1 to 164, a specific compound selected from P.1 to P.372 or a specific compound selected from Q.001 to Q.454 and the component B is Mefenoxam. In a further preferred embodiment the component A is a specific compound selected from Tables 1 to 164, a specific compound selected from P.1 to P.372 or a specific compound selected from Q.001 to Q.454 and the component B is Orocymedone. In a further preferred embodiment the component A is a specific compound selected from Tables 1 to 164, a specific compound selected from P.1 to P.372 or a specific compound selected from Q.001 to Q.454 and the component B is Thiamethoxam. In a further preferred embodiment the component A is a specific compound selected from Tables 1 to 164, a specific compound selected from P.1 to P.372 or a specific compound selected from Q.001 to Q.454 and the component B is Lambda-cyhalothrin. In a further preferred embodiment the component A is a specific compound selected from Tables 1 to 164, a specific compound selected from P.1 to P.372 or a specific compound selected from Q.001 to Q.454 and the component B is Gamma-cyhalothrin. In a further preferred embodiment the component A is a specific compound selected from Tables 1 to 164, a specific compound selected from P.1 to P.372 or a specific compound selected from Q.001 to Q.454 and the component B is Profenofos. In a further preferred embodiment the component A is a specific compound selected from Tables 1 to 164, a specific compound selected from P.1 to P.372 or a specific compound selected from Q.001 to Q.454 and the component B is Lufenuron. In a further preferred embodiment the component A is a specific compound selected from Tables 1 to 164, a specific compound selected from P.1 to P.372 or a specific compound selected from Q.001 to Q.454 and the component B is Diflubenzuron. In a further preferred embodiment the component A is a specific compound selected from Tables 1 to 164, a specific compound selected from P.1 to P.372 or a specific compound selected from Q.001 to Q.454 and the component B is Cypermethrin. In a further preferred embodiment the component A is a specific compound selected from Tables 1 to 164, a specific compound selected from P.1 to P.372 or a specific compound selected from Q.001 to Q.454 and the component B is Novaluron. In a further preferred embodiment the component A is

92

a specific compound selected from Tables 1 to 164, a specific compound selected from P.1 to P.372 or a specific compound selected from Q.001 to Q.454 and the component B is Bifenthrin. In a further preferred embodiment the component A is a specific compound selected from Tables 1 to 164, a 5 specific compound selected from P.1 to P.372 or a specific compound selected from Q.001 to Q.454 and the component B is Methomyl. In a further preferred embodiment the component A is a specific compound selected from Tables 1 to 164, a specific compound selected from P.1 to P.372 or a 10 specific compound selected from Q.001 to Q.454 and the component B is Chlopyrifos. In a further preferred embodiment the component A is a specific compound selected from Tables 1 to 164, a specific compound selected from P.1 to P.372 or a specific compound selected from Q.001 to Q.454 15 and the component B is Methamidophos. In a further preferred embodiment the component A is a specific compound selected from Tables 1 to 164, a specific compound selected from P.1 to P.372 or a specific compound selected from Q.001 to 0.454 and the component B is Endosulfan. In a further 20 preferred embodiment the component A is a specific compound selected from Tables 1 to 164, a specific compound selected from P.1 to P.372 or a specific compound selected from Q.001 to Q.454 and the component B is Betacyfluthrin. In a further preferred embodiment the component A is a 25 specific compound selected from Tables 1 to 164, a specific compound selected from P.1 to P.372 or a specific compound selected from Q.001 to Q.454 and the component B is Triflumuron. In a further preferred embodiment the component A is a specific compound selected from Tables 1 to 164, a specific 30 compound selected from P.1 to P.372 or a specific compound selected from Q.001 to Q.454 and the component B is Teflubenzuron. In a further preferred embodiment the component A is a specific compound selected from Tables 1 to 164, a specific compound selected from P.1 to P.372 or a 35 specific compound selected from Q.001 to Q.454 and the component B is Acephat. In a further preferred embodiment the component A is a specific compound selected from Tables 1 to 164, a specific compound selected from P.1 to P.372 or a specific compound selected from Q.001 to Q.454 and the 40 component B is Glyphosate. In a further preferred embodiment the component A is a specific compound selected from Tables 1 to 164, a specific compound selected from P.1 to P.372 or a specific compound selected from Q.001 to Q.454 and the component B is Glufosinate. In a further preferred 45 embodiment the component A is a specific compound selected from Tables 1 to 164, a specific compound selected from P.1 to P.372 or a specific compound selected from Q.001 to Q.454 and the component B is Mesotrione. In a further preferred embodiment the component A is a specific com- 50 pound selected from Tables 1 to 164, a specific compound selected from P.1 to P.372 or a specific compound selected from Q.001 to Q.454 and the component B is Bicyclopyrone. In a further preferred embodiment the component A is a specific compound selected from Tables 1 to 164, a specific 55 compound selected from P.1 to P.372 or a specific compound selected from Q.001 to Q.454 and the component B is Tembotrione. In a further preferred embodiment the component A is a specific compound selected from Tables 1 to 164, a specific compound selected from P.1 to P.372 or a specific 60 compound selected from Q.001 to Q.454 and the component B is Sulcotrione. In a further preferred embodiment the component A is a specific compound selected from Tables 1 to 164, a specific compound selected from P.1 to P.372 or a specific compound selected from Q.001 to Q.454 and the 65 component B is 2,4-D. In a further preferred embodiment the component A is a specific compound selected from Tables 1

to 164 or a specific compound selected from P.1 to P.372 or a specific compound selected from Q.001 to Q.454 and the component B is MCPA. In a further preferred embodiment the component A is a specific compound selected from Tables 1 to 164, a specific compound selected from P.1 to P.372 or a specific compound selected from Q.001 to Q.454 and the component B is Trinexapac-ethyl. In a further preferred embodiment the component A is a specific compound selected from Tables 1 to 164, a specific compound selected from P.1 to P.372 or a specific compound selected from Q.001 to Q.454 and the component B is Prohexadione-Ca. In a further preferred embodiment the component A is a specific compound selected from Tables 1 to 164, a specific compound selected from P.1 to P.372 or a specific compound selected from Q.001 to Q.454 and the component B is Paclobutrazol. In a further preferred embodiment the component A is a specific compound selected from Tables 1 to 164, a specific compound selected from P.1 to P.372 or a specific compound selected from Q.001 to Q.454 and the component B is Acibenzolar-5-methyl. In a further preferred embodiment the component A is a specific compound selected from Tables 1 to 164, a specific compound selected from P.1 to P.372 or a specific compound selected from Q.001 to Q.454 and the component B is Methyl-Jasmonate. In a further preferred embodiment the component A is a specific compound selected from Tables 1 to 164, a specific compound selected from P.1 to P.372 or a specific compound selected from Q.001 to Q.454 and the component B is Cis-Jasmone. In a further preferred embodiment the component A is a specific compound selected from Tables 1 to 164, a specific compound selected from P.1 to P.372 or a specific compound selected from Q.001 to Q.454 and the component B is Manganese. In a further preferred embodiment the component A is a specific compound selected from Tables 1 to 164, a specific compound selected from P.1 to P.372 or a specific compound selected from Q.001 to Q.454 and the component B is Cyflufenamid. In a further preferred embodiment the component A is a specific compound selected from Tables 1 to 164, a specific compound selected from P.1 to P.372 or a specific compound selected from Q.001 to Q.454 and the component B is Tebufloquin. In a further preferred embodiment the component A is a specific compound selected from Tables 1 to 164, a specific compound selected from P.1 to P.372 or a specific compound selected from Q.001 to Q.454 and the component B is Copper. In a further preferred embodiment the component A is a specific compound selected from Tables 1 to 164, a specific compound selected from P.1 to P.372 or a specific compound selected from Q.001 to Q.454 and the component B is Coumoxystrobin. In a further preferred embodiment the component A is a specific compound selected from Tables 1 to 164, a specific compound selected from P.1 to P.372 or a specific compound selected from Q.001 to Q.454 and the component B is Dicloaminostrobin. In a further preferred embodiment the component A is a specific compound selected from Tables 1 to 164, a specific compound selected from P.1 to P.372 or a specific compound selected from Q.001 to Q.454 and the component B is Flufenoxystrobin. In a further preferred embodiment the component A is a specific compound selected from Tables 1 to 164, a specific compound selected from P.1 to P.372 or a specific compound selected from Q.001 to Q.454 and the component B is Pyrametostrobin. In a further preferred embodiment the component A is a specific compound selected from Tables 1 to 164, a specific compound selected from P.1 to P.372 or a specific compound selected from Q.001 to Q.454 and the component B is Pyraoxystrobin. In a further preferred embodiment the component A is a specific compound selected from Tables 1 to 164, a specific compound selected from P.1 to P.372 or a specific compound selected from Q.001 to Q.454 and the component B is Trifloxystrobin. In a further preferred embodiment the component A is a specific compound selected from Tables 1 to 164, a specific 5 compound selected from P.1 to P.372 or a specific compound selected from Q.001 to Q.454 and the component B is Azoxystrobin. In a further preferred embodiment the component A is a specific compound selected from Tables 1 to 164, a specific compound selected from P.1 to P.372 or a specific compound selected from Q.001 to Q.454 and the component B is Pyraclostrobin. In a further preferred embodiment the component A is a specific compound selected from Tables 1 to 164, a specific compound selected from P.1 to P.372 or a specific compound selected from Q.001 to Q.454 and the 15 component B is Picoxystrobin. In a further preferred embodiment the component A is a specific compound selected from Tables 1 to 164, a specific compound selected from P.1 to P.372 or a specific compound selected from Q.001 to Q.454 and the component B is Jiaxiangjunzhi. In a further preferred 20 embodiment the component A is a specific compound selected from Tables 1 to 164, a specific compound selected from P.1 to P.372 or a specific compound selected from Q.001 to Q.454 and the component B is Enoxastrobin. In a further preferred embodiment the component A is a specific com- 25 pound selected from Tables 1 to 164, a specific compound selected from P.1 to P.372 or a specific compound selected from Q.001 to Q.454 and the component B is Triclopyricarb. In a further preferred embodiment the component A is a specific compound selected from Tables 1 to 164, a specific 30 compound selected from P.1 to P.372 or a specific compound selected from Q.001 to Q.454 and the component B is Fluoxastrobin. In a further preferred embodiment the component A is a specific compound selected from Tables 1 to 164, a specific compound selected from P.1 to P.372 or a specific 35 compound selected from Q.001 to Q.454 and the component B is Dimoxystrobin. In a further preferred embodiment the component A is a specific compound selected from Tables 1 to 164, a specific compound selected from P.1 to P.372 or a specific compound selected from Q.001 to Q.454 and the 40 component B is Fenaminostrobin. In a further preferred embodiment the component A is a specific compound selected from Tables 1 to 164, a specific compound selected from P.1 to P.372 or a specific compound selected from Q.001 to Q.454 and the component B is the compound of formula II. 45 In a further preferred embodiment the component A is a specific compound selected from Tables 1 to 164, a specific compound selected from P.1 to P.372 or a specific compound selected from Q.001 to Q.454 and the component B is Cyproconazole. In a further preferred embodiment the component A 50 is a specific compound selected from Tables 1 to 164, a specific compound selected from P.1 to P.372 or a specific compound selected from Q.001 to Q.454 and the component B is Difenoconazole. In a further preferred embodiment the component A is a specific compound selected from Tables 1 55 to 164, a specific compound selected from P.1 to P.372 or a specific compound selected from Q.001 to Q.454 and the component B is Metconazole. In a further preferred embodiment the component A is a specific compound selected from Tables 1 to 164, a specific compound selected from P.1 to 60 P.372 or a specific compound selected from Q.001 to Q.454 and the component B is Propiconazole. In a further preferred embodiment the component A is a specific compound selected from Tables 1 to 164, a specific compound selected from P.1 to P.372 or a specific compound selected from Q.001 65 to Q.454 and the component B is Epoxiconazole. In a further preferred embodiment the component A is a specific com-

pound selected from Tables 1 to 164, a specific compound selected from P.1 to P.372 or a specific compound selected from Q.001 to Q.454 and the component B is Tebuconazole. In a further preferred embodiment the component A is a specific compound selected from Tables 1 to 164, a specific compound selected from P.1 to P.372 or a specific compound selected from Q.001 to Q.454 and the component B is Flutriafol. In a further preferred embodiment the component A is a specific compound selected from Tables 1 to 164, a specific compound selected from P.1 to P.372 or a specific compound selected from Q.001 to Q.454 and the component B is Ipconazole. In a further preferred embodiment the component A is a specific compound selected from Tables 1 to 164, a specific compound selected from P.1 to P.372 or a specific compound selected from Q.001 to Q.454 and the component B is 1-(2chlorophenyl)-2-(1-chlorocycloprop-1-yl)-3-(1,2,4-triazol-1-yl)propan-2-ol [CAS number 120983-64-4]. In a further preferred embodiment the component A is a specific compound selected from Tables 1 to 164, a specific compound selected from P.1 to P.372 or a specific compound selected from Q.001 to Q.454 and the component B is prothioconazole. In a further preferred embodiment the component A is a specific compound selected from Tables 1 to 164, a specific compound selected from P.1 to P.372 or a specific compound selected from Q.001 to Q.454 and the component B is (S)-[3-(4-chloro-2-fluoro-phenyl)-5-(2,4-difluoro-phenyl)-isoxazol-4-yl]-pyridin-3-yl-methanol [CAS number 1229606-46-5]. In a further preferred embodiment the component A is a specific compound selected from Tables 1 to 164 or a specific compound selected from P.1 to P.372 or a specific compound selected from Q.001 to Q.454 and the component B is 3-(4-Chloro-2-fluoro-phenyl)-5-(2,4-difluoro-phenyl)isoxazol-4-yl]-pyridin-3-yl-methanol [CAS number 1229605-96-2]. In a further preferred embodiment the component A is a specific compound selected from Tables 1 to 164, a specific compound selected from P.1 to P.372 or a specific compound selected from Q.001 to Q.454 and the component B is Pyrisoxazole. In a further preferred embodiment the component A is a specific compound selected from Tables 1 to 164, a specific compound selected from P.1 to P.372 or a specific compound selected from Q.001 to Q.454 and the component B is 3-(difluoromethyl)-N-methoxy-1methyl-N-[1-methyl-2-(2,4,6-trichlorophenyl)ethyl]-1H-Pyrazole-4-carboxamide [CAS number 1228284-64-7]. In a further preferred embodiment the component A is a specific compound selected from Tables 1 to 164, a specific compound selected from P.1 to P.372 or a specific compound selected from Q.001 to Q.454 and the component B is N-[9-(dichloromethylene)-1,2,3,4-tetrahydro-1,4-methanonaphthalen-5-yl]-3-(difluoromethyl)-1-methyl-1H-pyrazole-4carboxamide [CAS number 1072957-71-1]. In a further preferred embodiment the component A is a specific compound selected from Tables 1 to 164, a specific compound selected from P.1 to P.372 or a specific compound selected from Q.001 to Q.454 and the component B is Isopyrazam. In a further preferred embodiment the component A is a specific compound selected from Tables 1 to 164, a specific compound selected from P.1 to P.372 or a specific compound selected from Q.001 to Q.454 and the component B is Sedaxane. In a further preferred embodiment the component A is a specific compound selected from Tables 1 to 164, a specific compound selected from P.1 to P.372 or a specific compound selected from Q.001 to Q.454 and the component B is Boscalid. In a further preferred embodiment the component A is a specific compound selected from Tables 1 to 164, a specific compound selected from P.1 to P.372 or a specific compound selected from Q.001 to Q.454 and the component B is Flux95

apyroxad. In a further preferred embodiment the component A is a specific compound selected from Tables 1 to 164, a specific compound selected from P.1 to P.372 or a specific compound selected from Q.001 to Q.454 and the component B is Penthiopyrad. In a further preferred embodiment the 5 component A is a specific compound selected from Tables 1 to 164, a specific compound selected from P.1 to P.372 or a specific compound selected from Q.001 to Q.454 and the component B is Penflufen. In a further preferred embodiment the component A is a specific compound selected from Tables 1 to 164, a specific compound selected from P.1 to P.372 or a specific compound selected from Q.001 to Q.454 and the component B is Bixafen. In a further preferred embodiment the component A is a specific compound selected from Tables 1 to 164, a specific compound selected from P.1 to P.372 or a 15 specific compound selected from Q.001 to Q.454 and the component B is Fluopyram. In a further embodiment the invention relates to a specific compound selected from Tables

The compounds of formula I, and, where appropriate, the tautomers thereof, can be present in the form of one of the isomers which are possible or as a mixture of these, for example in the form of pure isomers, such as antipodes and/or diastereomers, or as isomer mixtures, such as structural iso- 25 mer, stereo isomer, diastereoisomer and enantiomer mixtures, for example racemates, diastereomer mixtures or racemate mixtures, depending on the number, absolute and relative configuration of asymmetric carbon atoms which occur in the molecule and/or depending on the configuration 30 of non-aromatic double bonds which occur in the molecule; the invention relates to the pure isomers and also to all isomer mixtures which are possible and is to be understood in each case in this sense hereinabove and hereinbelow, even when stereochemical details are not mentioned specifically in each 35

1 to 164, a specific compound selected from P.1 to P.372 or a

specific compound selected from 0.001 to 0.454.

Likewise, where isomers are possible for compounds that may be selected as component B, the invention relates to the pure isomers and also to all isomer mixtures which are pos-

The compositions according to the invention have, for practical purposes, a very advantageous spectrum of activities for protecting useful plants against diseases that are caused by phytopathogenic microorganisms, such as fungi, bacteria or viruses.

The invention relates to a method of controlling or preventing infestation of useful plants by phytopathogenic microorganisms, wherein a composition of the invention is applied to the plants, to parts thereof or the locus thereof. The compositions according to the invention are distinguished by excel- 50 lent activity at low rates of application, by being well tolerated by plants and by being environmentally safe. They have very useful curative, preventive and systemic properties and are used for protecting numerous useful plants. The compositions of the invention can be used to inhibit or destroy the 55 diseases that occur on plants or parts of plants (fruit, blossoms, leaves, stems, tubers, roots) of different crops of useful plants, while at the same time protecting also those parts of the plants that grow later e.g. from phytopathogenic microorganisms.

It is also possible to use compositions of the invention as dressing agents for the treatment of plant propagation material, in particular of seeds (fruit, tubers, grains) and plant cuttings (e.g. rice), for the protection against fungal infections

Furthermore the compositions of the invention may be used for controlling fungi in related areas, for example in the 96

protection of technical materials, including wood and wood related technical products, in food storage or in hygiene man-

The compositions of the invention are, for example, effective against the phytopathogenic fungi of the following classes: Fungi imperfecti (e.g. Botrytis, Pyricularia, Helminthosporium, Fusarium, Septoria, Cercospora and Alternaria) and Basidiomycetes (e.g. Rhizoctonia, Hemileia, Puccinia). Additionally, they are also effective against the Ascomycetes classes (e.g. Venturia and Erysiphe, Podosphaera, Monilinia, Uncinula) and of the Oomycetes classes (e.g. Phytophthora, Pythium, Plasmopara). Outstanding activity has been observed against powdery mildew (Erysiphe spp.). Furthermore, the compositions of the invention are effective against phytopathogenic bacteria and viruses (e.g. against Xanthomonas spp, Pseudomonas spp, Erwinia amylovora as well as against the tobacco mosaic virus). Good activity has been observed against rust disease, like leaf rust (Puccinia spp.) and soybean rust (Phakopsora 20 pachvrhizi).

Within the scope of the invention, useful plants to be protected typically comprise the following species of plants: cereal (wheat, barley, rye, oat, rice, maize, sorghum and related species); beet (sugar beet and fodder beet); pomes, drupes and soft fruit (apples, pears, plums, peaches, almonds, cherries, strawberries, raspberries and blackberries); leguminous plants (beans, lentils, peas, soybeans); oil plants (rape, mustard, poppy, olives, sunflowers, coconut, castor oil plants, cocoa beans, groundnuts); cucumber plants (pumpkins, cucumbers, melons); fiber plants (cotton, flax, hemp, jute); citrus fruit (oranges, lemons, grapefruit, mandarins); vegetables (spinach, lettuce, asparagus, cabbages, carrots, onions, tomatoes, potatoes, paprika); lauraceae (avocado, cinnamomum, camphor) or plants such as tobacco, nuts, coffee, eggplants, sugar cane, tea, pepper, vines, hops, bananas and natural rubber plants, as well as ornamentals and turf and grass species.

The toxin contained in the transgenic plants imparts to the plants tolerance to harmful insects. Such insects can occur in 40 any taxonomic group of insects, but are especially commonly found in the beetles (Coleoptera), two-winged insects (Diptera) and butterflies (Lepidoptera).

Transgenic plants containing one or more genes that code for an insecticidal resistance and express one or more toxins 45 are known and some of them are commercially available. Examples of such plants are: YieldGard® (maize variety that expresses a Cry1Ab toxin); YieldGard Rootworm® (maize variety that expresses a Cry3Bb1 toxin); YieldGard Plus® (maize variety that expresses a Cry1Ab and a Cry3Bb1 toxin); Starlink® (maize variety that expresses a Cry9 C toxin); Herculex I® (maize variety that expresses a Cry1Fa2 toxin and the enzyme phosphinothricine N-acetyltransferase (PAT) to achieve tolerance to the herbicide glufosinate ammonium); NuCOTN 33B® (cotton variety that expresses a Cry1Ac toxin); Bollgard I® (cotton variety that expresses a Cry1Ac toxin); Bollgard II® (cotton variety that expresses a Cry1Ac and a Cry2Ab toxin); VipCot® (cotton variety that expresses a Vip3A and a Cry1Ab toxin); NewLeaf® (potato variety that expresses a Cry3A toxin); NatureGard®, Agri-60 sure® GT Advantage (GA21 glyphosate-tolerant trait), Agrisure® CB Advantage (Bt11 corn borer (CB) trait) and Pro-

Further examples of such transgenic crops are:

1. Bt11 Maize from Syngenta Seeds SAS, Chemin de as well as against phytopathogenic fungi occurring in the soil. 65 l'Hobit 27, F-31 790 St. Sauveur, France, registration number C/FR/96/05/10. Genetically modified Zea mays which have been rendered resistant to attack by the European corn borer

97

(Ostrinia nubilalis and Sesamia nonagrioides) by transgenic expression of a truncated Cry1Ab toxin. Bt11 maize also transgenically expresses the enzyme PAT to achieve tolerance to the herbicide glufosinate ammonium.

- 2. Bt176 Maize from Syngenta Seeds SAS, Chemin de 1'Hobit 27, F-31 790 St. Sauveur, France, registration number C/FR/96/05/10. Genetically modified *Zea mays* which have been rendered resistant to attack by the European corn borer (*Ostrinia nubilalis* and *Sesamia nonagrioides*) by transgenic expression of a Cry1Ab toxin. Bt176 maize also transgenically expresses the enzyme PAT to achieve tolerance to the herbicide glufosinate ammonium.
- 3. MIR 604Maize from Syngenta Seeds SAS, Chemin de l'Hobit 27, F-31 790 St. Sauveur, France, registration number C/FR/96/05/10. Maize which has been rendered insect-resistant by transgenic expression of a modified Cry3A toxin. This toxin is Cry3A055 modified by insertion of a cathepsin-G-protease recognition sequence. The preparation of such transgenic maize plants is described in WO 03/018810.
- 4. MON 863 Maize from Monsanto Europe S.A. 270-272 20 Avenue de Tervuren, B-1150 Brussels, Belgium, registration number C/DE/02/9. MON 863 expresses a Cry3Bb1 toxin and has resistance to certain Coleoptera insects.
- 5. IPC 531 Cotton from Monsanto Europe S.A. 270-272 Avenue de Tervuren, B-1150 Brussels, Belgium, registration 25 number C/ES/96/02.
- 6.1507 Maize from Pioneer Overseas Corporation, Avenue Tedesco, 7 B-1160 Brussels, Belgium, registration number C/N L/00/10. Genetically modified maize for the expression of the protein Cry1 F for achieving resistance to certain Lepidoptera insects and of the PAT protein for achieving tolerance to the herbicide glufosinate ammonium.

7. NK603×MON 810 Maize from Monsanto Europe S.A. 270-272 Avenue de Tervuren, B-1150 Brussels, Belgium, registration number C/GB/02/M3/03. Consists of conventionally bred hybrid maize varieties by crossing the genetically modified varieties NK603 and MON 810. NK603×MON 810 Maize transgenically expresses the protein CP4 EPSPS, obtained from *Agrobacterium* sp. strain CP4, which imparts tolerance to the herbicide Roundup® (contains glyphosate), and also a Cry1Ab toxin obtained from *Bacillus thuringiensis* subsp. *kurstaki* which brings about tolerance to certain Lepidoptera, include the European corn borer.

The term "locus" of a useful plant as used herein is intended to embrace the place on which the useful plants are 45 growing, where the plant propagation materials of the useful plants are sown or where the plant propagation materials of the useful plants will be placed into the soil. An example for such a locus is a field, on which crop plants are growing.

The term "plant propagation material" is understood to 50 denote generative parts of the plant, such as seeds, which can be used for the multiplication of the latter, and vegetative material, such as cuttings or tubers, for example potatoes. There may be mentioned for example seeds (in the strict sense), roots, fruits, tubers, bulbs, rhizomes and parts of 55 plants. Germinated plants and young plants which are to be transplanted after germination or after emergence from the soil, may also be mentioned. These young plants may be protected before transplantation by a total or partial treatment by immersion. Preferably "plant propagation material" is 60 understood to denote seeds.

Components A and B can be used in unmodified form or, preferably, together with carriers and adjuvants conventionally employed in the art of formulation.

To this components A and B and inert carriers are conveniently formulated in known manner to emulsifiable concentrates, coatable pastes, directly sprayable or dilutable solu-

98

tions, dilute emulsions, wettable powders, soluble powders, dusts, granulates, and also encapsulations e.g. in polymeric substances. As with the type of the compositions, the methods of application, such as spraying, atomizing, dusting, scattering, coating or pouring, are chosen in accordance with the intended objectives and the prevailing circumstances. The compositions may also contain further adjuvants such as stabilizers, antifoams, viscosity regulators, binders or tackifiers as well as fertilizers, micronutrient donors or other formulations for obtaining special effects.

Suitable carriers and adjuvants can be solid or liquid and are substances useful in formulation technology, e.g. natural or regenerated mineral substances, solvents, dispersants, wetting agents, tackifiers, thickeners, binders or fertilizers. Such carriers are for example described in WO 97/33890.

The compositions of the invention can be applied to the locus of the plant or plant to be treated, simultaneously or in succession with further compounds. These further compounds can be e.g. fertilizers or micronutrient donors or other preparations which influence the growth of plants. They can also be herbicides as well as insecticides, fungicides, bactericides, nematicides, molluscicides or mixtures of several of these preparations, if desired together with further carriers, surfactants or application promoting adjuvants customarily employed in the art of formulation. Suitable further compounds are described in WO2008/101682.

A preferred method of the invention is foliar application. The frequency of application and the rate of application will depend on the risk of infestation by the corresponding pathogen. However, the compositions of the invention can also penetrate the plant through the roots via the soil (systemic action) by drenching the locus of the plant with a liquid formulation, or by applying the compounds in solid form to the soil, e.g. in granular form (soil application). In crops of water rice such granulates can be applied to the flooded rice field. The compositions of the invention may also be applied to seeds (coating) by impregnating the seeds or tubers either with a liquid formulation of the fungicide or coating them with a solid formulation.

A formulation, i.e. a composition of the invention and, if desired, comprising a solid or liquid adjuvant, is prepared in a known manner, typically by intimately mixing and/or grinding the compound with extenders, for example solvents, solid carriers and, optionally, surface-active compounds (surfactants).

The agrochemical formulations will usually contain from 0.1 to 99% by weight, preferably from 0.1 to 95% by weight, of the active ingredients, 99.9 to 1% by weight, preferably 99.8 to 5% by weight, of a solid or liquid adjuvant, and from 0 to 25% by weight, preferably from 0.1 to 25% by weight, of a surfactant.

Whereas it is preferred to formulate commercial products as concentrates, the end user will normally use dilute formulations.

Advantageous rates of application are normally from 1 g to 2 kg of active ingredient (a.i.) per hectare (ha), preferably from 10 g to 1 kg a.i./ha, most preferably from 20 g to 600 g a.i./ha. When used as seed drenching agent, convenient rates of application are from 10 mg to 1 g of active substance per kg of seeds. The rate of application for the desired action can be determined by experiments. It depends for example on the type of action, the developmental stage of the useful plant, and on the application (location, timing, application method) and can, owing to these parameters, vary within wide limits.

Said methods are particularly effective against the phytopathogenic organisms of the kingdom Fungi, phylum Basidiomycot, class Uredinomycetes, subclass Urediniomycetidae and the order Uredinales (commonly referred to as rusts). Species of rusts having a particularly large impact on agriculture include those of the family Phakopsoraceae, particularly those of the genus *Phakopsora*, for example *Phakopsora pachyrhizi*, which is also referred to as Asian soybean rust, and those of the family Pucciniaceae, particularly those of the genus *Puccinia* such as *Puccinia graminis*, also known as stem rust or black rust, which is a problem disease in cereal crops and *Puccinia recondita*, also known as brown rust.

The compositions of the invention are effective against various microbial species able to cause a microbial infection in an animal. Examples of such microbial species are those causing Aspergillosis such as *Aspergillus fumigatus*, *A. flavus*, *A. terrus*, *A. nidulans* and *A. niger*, those causing Blastomycosis such as *Blastomyces dermatitidis*; those causing

Candidiasis such as Candida albicans, C. glabrata, C. tropicalis, C. parapsilosis, C. krusei and C. lusitaniae; those causing Coccidioidomycosis such as Coccidioides immitis; those causing Cryptococcosis such as Cryptococcus neoformans; those causing Histoplasmosis such as Histoplasma capsulatum and those causing Zygomycosis such as Absidia corymbifera, Rhizomucor pusillus and Rhizopus arrhizus. Further examples are Fusarium Spp such as Fusarium oxysporum and Fusarium solani and Scedosporium Spp such as Scedosporium apiospermum and Scedosporium prolificans. Still further examples are Microsporum Spp, Trichophyton Spp, Epidermophyton Spp, Mucor Spp, Sporothorix Spp, Phialophora Spp, Cladosporium Spp, Petriellidium spp, Paracoccidioides Spp and Histoplasma Spp.

The following table provides a selection of compounds of the invention

Cpd No.	Structure
P.01	CI O N CH_3 CH_3
P.02	$\begin{array}{c} CH_3 \\ CH_3 \\ CH_3 \\ CH_3 \end{array}$
P.03	Cl CH ₃ N CH ₃
P.04	H_3C H CH CH_3
P.05	H_3C H CH_3 CH_3 CH_3 CH_3 CH_3 CH_3

Cpd No.	Structure
P.06	CH_3 CH_3 CH_3 CH_3 CH_3
P.07	CI CH_3 CH_3 CH_3 CH_3
P.08	$F = F$ $F = F$ $O = N$ $N = N$ $N = CH_3$ $N = CH_3$
P.09	$\begin{array}{c} CI \\ F \\ F \end{array}$
P.10	$\begin{array}{c} CH_3 \\ CH_3 \\ CH_3 \end{array}$
P.11	CH_3 CH_3 CH_3 CH_3 CH_3
P.12	H_3C CH_3 H_3C CH_3 CH_3 CH_3 CH_3

Cpd No.	Structure
P.13	$F = \begin{cases} C \\ F \end{cases}$
P.14	H_3C H_3C CH_3 CH_3 CH_3
P.15	H_{3} C N CH_{3}
P.16	$F = \begin{cases} CI & \text{CH}_3 \\ N & \text{N} \end{cases}$
P.17	H_3C CH_3 H_3C CH_3 CH_3
P.18	$\begin{array}{c} CH_3 \\ CH_3 \\ F \\ \end{array}$

Cpd No.	Structure
P.19	CI H_3C N CH_3 CH_3 CH_3
P.20	$F = \begin{cases} CH_3 \\ N \\ CH_3 \end{cases}$
P.21	$\begin{array}{c} \mathrm{CH_3} \\ \mathrm{O} \\ \end{array}$
P.22	CI O N N CH_3 CH_3
P.23	CH ₃ CH ₃ CH ₃
P.24	CH ₃ CH ₃ N CH ₃
P.25	$\stackrel{\mathrm{CH_{3}}}{\stackrel{ }{\stackrel{ }{\stackrel{ }{\stackrel{ }{\stackrel{ }{\stackrel{ }{\stackrel{ }$

	US 9,326,513 B2
	107
	-continued
Cpd No.	Structure
P.26	H_3C O
P.27	H_3C CH_3 CH_3 CH_3 CH_3 CH_3
P.28	H_3C CH_3 CH_3 CH_3 CH_3 CH_3
P.29	N CH_3

P.29
$$CI \longrightarrow O \longrightarrow N \longrightarrow N \longrightarrow CH_3$$

$$F \longrightarrow B_F \longrightarrow CH_3$$

P.30
$$CH_3$$
 CH_3 CH_3 CH_4 CH_5 CH

Cpd No.	Structure
P.31	CH_3
P.32	H_3C CH_3 CH_3 CH_3 CH_3 CH_3
P.33	$F \longrightarrow F \longrightarrow F \longrightarrow N \longrightarrow N \longrightarrow CH_3$ $F \longrightarrow F \longrightarrow F \longrightarrow N \longrightarrow CH_3$
P.34	CH_3 CH_3 CH_3 CH_3 CH_3 CH_3
P.35	H_3C H_3C O
P.36	$F = \bigcup_{CH_3} CH_3$ CH_3 CH_3

Cpd No.	Structure
P.37	$\stackrel{N}{\longrightarrow} \stackrel{N}{\longrightarrow} \stackrel{CH_3}{\longrightarrow} CH$
P.38	H_3C H CH_3 CH_3 CH_3 CH_3 CH_3
P.39	CH_3 CH_3 CH_3 CH_3 CH_3
P.40	$F \longrightarrow F \longrightarrow N \longrightarrow N \longrightarrow CH_3$ $F \longrightarrow F \longrightarrow N \longrightarrow N \longrightarrow CH_3$ $F \longrightarrow N \longrightarrow N \longrightarrow CH_3$
P.41	F O N CH_3 CH_3 CH_3
P.42	CH_3 CH_3 CH_3 CH_3 CH_3 CH_3
P.43	CH_3 CH_3 CH_3 CH_3 CH_3

Cpd No.	Structure
P.44	$C1$ N CH_3 CH_3 CH_3 CH_3
P.45	H_3C H_3C N CH_3 N CH_3 CH_3
P.46	H_3C H_3C CH_3 CH_3 CH_3 CH_3 CH_3
P.47	CH_3 CH_3 CH_3 CH_3
P.48	$\begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$
P.49	$F = \begin{cases} CH_3 \\ N \\ CH_3 \end{cases}$ CH_3 CH_3
P.50	$\begin{array}{c} CH_3 \\ CH_3 \\ CH_3 \\ CH_3 \\ CH_3 \end{array}$

Cpd No.	Structure
P.51	$F = \begin{array}{c} CH_3 \\ N \\ CH_3 \\ CH_3 \end{array}$
P.52	$\begin{array}{c} CH_3 \\ N \\ F \\ \end{array}$
P.53	$\begin{array}{c} CI \\ F \\ F \end{array}$
P.54	H_3C O
P.55	H_3C H_3C H_3C CH_3 CH_3 CH_3 CH_3 CH_3
P.56	$\begin{array}{c} & & & \\ & &$
P.57	H_3C H_3C N CH_3 N CH_3 CH_3

Cpd No.	Structure
P.58	H_3C H_3C N CH_3 CH_3
P.59	H_3C H_3C N CH_3 CH_3
P.60	N N N N N N N N N N
P.61	H_3C H_3C N N CH_3 CH_3
P.62	CH_3 CH_3 CH_3 CH_3 CH_3
P.63	CI CI N CH_3 CH_3 CH_3 CH_3

Cpd No.	Structure
P.64	H_3C H CH_3 CH_3 CH_3 CH_3
P.65	H_3C N CH_3 CH_3 CH_3
P.66	CI N CH_3 CH_3 CH_3
P.67	H_3C H CH_3 O N N CH_3 CH_3
P.68	CI H_3C CH_3 CH_3 CH_3
P.69	H_3C H CH_3 CH_3 CH_3 CH_3

Cpd No.	Structure
P.70	H_3C H_3C H_3C CH_3 CH_3 CH_3 CH_3
P.71	H_3C H_3C N N CH_3 CH_3
P.72	H_3C H_3C N N CH_3 CH_3
P.73	H_3C H_3C Cl N CH_3 CH_3
P.74	H_3C H_3C H_3C N F
P.75	H_3C

Cpd No.	Structure
P.76	$\begin{array}{c} & & \\$
P.77	CH_3 CH_3 CH_3 CH_3 CH_3
P.78	Br CH_3 CH_3 CH_3 CH_3 CH_3
P.79	Br CI CH_3 CH_3 CH_3 CH_3 CH_3
P.80	$I \xrightarrow{N} CH_3$ CH_3 $N \xrightarrow{CH_3}$ $N \xrightarrow{CH_3}$ CH_3 CH_3 CH_3
P.81	H_3C H_3C N N CH_3 CH_3

	Continued
Cpd No.	Structure
P.82	$H_3C - O$ CH_3 CH_3 CH_3 CH_3 CH_3
P.83	$\begin{array}{c} & & \\$
P.84	$\begin{array}{c} & & \\ & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ &$
P.85	$\begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$
P.86	CH_3 CH_3 CH_3 CH_3 CH_3

	-continued
Cpd No.	Structure
P.87	$\begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$
P.88	$\bigcap_{N}^{\operatorname{CH}_3} \bigcap_{\operatorname{Br}}^{\operatorname{CH}_3} \bigcap_{\operatorname{CH}_3}^{\operatorname{CH}_3}$
P.89	$\bigcap_{O} \bigcap_{\operatorname{Br}} \bigcap_{\operatorname{CH}_3} $
P.90	$\begin{array}{c} CH_3 \\ CH_3 \\ N \\ N \\ N \\ CH_3 \end{array}$
P.91	$\bigcap_{O} \bigcap_{Br} \bigcap_{CH_3} \bigcap_{CH_3}$
P.92	$\begin{array}{c} CH_3 \\ CH_3 \\ N \\ N \end{array}$

-continued	
Cpd No.	Structure
P.93	$\begin{array}{c} CH_3 \\ N \\ N \end{array}$
P.94	$\begin{array}{c} -\text{O} \\ \\ \text{O} \\ \\ \text{Br} \end{array}$
P.95	$\begin{array}{c} & & \\$
P.96	$\begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$
P.97	CH_3 CH_3 CH_3 CH_3 CH_3 CH_3

-continued	
Cpd No.	Structure
P.98	\sim
P.99	CH_3 CH_3 CH_3 CH_3 CH_3
P.100	$\begin{array}{c} & & \\$
P.101	$\begin{array}{c} & & \\$
P.101a Cl.	CH ₃ CH ₃ CH ₃ CH ₃

Cpd No.	Structure
P.102	$F \longrightarrow F \qquad CH_3 \qquad CH_4 \qquad CH_4 \qquad CH_5 \qquad$
P.103	$\begin{array}{c c} & CH_3 & CH_3 \\ \hline \\ O & N & N \\ \hline \\ O & Br \\ \end{array}$
P.104	CI CH ₃ CH ₃ CH ₃ CH ₃ CH ₃
P.105	CI CH ₃ CH ₃ CH ₃ CH ₃ CH ₃
P.106	CI O N CH_3 CH_3 CH_3 CH_3 CH_3
P.107	$\bigcap_{\mathrm{CH}_3} \bigcap_{\mathrm{CH}_3} \bigcap_{\mathrm$
P.108	$\bigcap_{N} \bigcap_{\text{CH}_3} \bigcap_{N} \bigcap_{\text{CH}_3} \bigcap_{\text$

Cpd No.	Structure
P.109	$\begin{array}{c} Cl \\ Cl \\ \\ CH_3 \\ \\ \\ CH_3 \\ \\ \\ CH_3 \\ \\ \\ CH_3 \\ \\ \end{array}$
P.110	$\bigcap_{N} \bigcap_{N} \bigcap_{N$
P.111	$\begin{array}{c c} & & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & &$
P.112	$\begin{array}{c} & & & \\ & &$
P.113	$\begin{array}{c c} & CH_3 & CH_3 \\ \hline \\ O & N & N \\ \hline \\ Br & \\ \end{array}$
P.114	$\begin{array}{c} CH_3 \\ CH_3 \\ N \\ N \\ CH_3 \end{array}$
P.115	$\begin{array}{c} CH_3 \\ N \\ N \\ N \\ CH_3 \end{array}$

Cpd No.	Structure
P.116	$\begin{array}{c} CH_3 \\ N \\ N \\ N \\ CH_3 \end{array}$
P.117	CH_3 CH_3 CH_3 CH_3 CH_3
P.118	CH_3 N CH_3 CH_3 CH_3 CH_3
P.119	$\begin{array}{c} F \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $
P.120	$F \qquad \qquad$
P.121	$F \longrightarrow \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$
P.122	O N CH_3 CH_3 CH_3 CH_3

Cpd No.	Structure
P.123	$\begin{array}{c} & & \\$
P.124	$\begin{array}{c} \begin{array}{c} \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \end{array} \\ \\ \begin{array}{c} \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$
P.125	O N CH_3 CH_3 CH_3 CH_3
P.126	$\begin{array}{c} F \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $
P.127	$\begin{array}{c} F \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $
P.128	$\begin{array}{c} F \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $
P.129	F O N CH_3 CH_3 CH_3 CH_3

Cpd No.	Structure
P.130	O N CH_3 N CH_3 N CH_3
P.131	$\begin{array}{c} & & \\$
P.132	$F \longrightarrow \begin{array}{c} & & & \\ & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\$
P.133	$\begin{array}{c} & & \\$
P.134	CH_3 CH_3 CH_3 CH_3 CH_3
P.135	CH_3 CH_3 CH_3 CH_3 CH_3
P.136	N N N N N N N N N N

Cpd No.	Structure
P.137	$\bigcup_{\mathrm{Br}} \mathbb{N} = \mathbb{N}$
P.138	$F \longrightarrow \bigcup_{\mathrm{Br}} N \longrightarrow \bigcup_{\mathrm{N}} N$
P.139	r r r r r r r r r r
P.140	N N N N N N N N N N
P.141	
P.142	F O
P.143	r r r r r r r r r r

Cpd No.	Structure
P.145	$- \left\langle \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$
P.146	F O N
P.147	$\bigcup_{\mathrm{Br}}^{\mathrm{N}} \bigvee_{\mathrm{N}}^{\mathrm{N}}$
P.148	$ \begin{array}{c} $
P.149	
P.150	$\bigcup_{\mathrm{Br}} N \longrightarrow N$
P.151	N N N N N N N N N N
P.152	Cl N

Cpd No.	Structure
P.153	O O O O O O O O O O
P.154	r r r r r r r r r r
P.155	N N N N N N N N N N
P.156	
P.157	S O N
P.158	

Cpd No.	Structure
P.159	Br N N N N N N N N N N N N N N N N N N N
P.160	
P.161	
P.162	
P.163	

Cpd No.	Structure
P.164	
P.165	O N N N N N N N N N N N N N N N N N N N
P.166	$\bigcup_{N}^{N} \bigcup_{N}^{S} \bigcup_{N} \bigcup_{N}^{N} \bigcup_{N} \bigcup_{N}^{N} \bigcup_{N} \bigcup_{N}^{N} \bigcup_{N}^$
P.167	$\begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$
P.168	N N N N N N N N N N N N N N N N N N N
P.169	N N N N N N N N N N N N N N N N N N N

	Continued
Cpd No.	Structure
P.170	Br N N N
P.171	F N
P.172	$\begin{array}{c} F \\ \\ \\ N \\ \\ S \\ \end{array}$
P.173	$\begin{array}{c} F \\ \\ \\ N \\ \\ S \end{array}$
P.174	$\begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$
P.175	

Cpd No.	Structure
P.176	$\begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$
P.177	N O N
P.178	$\begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$
P.179	$\bigcap_{O} \bigcap_{N} \bigcap_{N$
P.180	ON NON NON NON NON NON NON NON NON NON
P.181	N N N N N N N N N N
P.182	

Cpd No.	Structure
P.183	Si O N N N N N
P.184	$\begin{array}{c c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$
P.185	N N N N N N N N N N N N N N N N N N N
P.186	N N N N N N N N N N
P.187	N N Br O
P.188	F O N N N N N

Cpd No.	Structure
P.189	F O N
P.190	
P.191	N N N N N N N N N N
P.192	
P.193	N N N N N N N N N N
P.194	N N N N N N N N N N
P.195	N N N N N N N N N N
P.196	N N N N N N N N N N

Cpd	
No.	Structure
P.197	$\bigcup_{\mathrm{Br}} \mathbb{N} = \mathbb{N}$
P.198	N N N N N N N N N N
P.199	
P.200	
P.201	

	-continued
Cpd No.	Structure
P.202	
P.203	
P.204	
P.205	

	-continued
Cpd No.	Structure
P.206	
P.207	
P.208	
P.209	

Cpd No.	Structure
P.210	
P.211	
P.212	$\begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$
P.213	N N N N
P.214	$\begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \end{array}$

	continued
Cpd No.	Structure
P.215	
P.216	$\begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$
P.217	
P.218	
P.219	

Cpd No.	Structure
P.220	N N N N N N N N N N N N N N N N N N N
P.221	
P.222	
P.223	N S N N N N N N N N N N N N N N N N N N
P.224	S N
P.225	N N N N N N N N N N

Cpd No.	Structure
P.226	
P.227	$\bigcup_{\mathrm{Dr}} \bigcup_{\mathrm{Dr}} \bigcup_{\mathrm{N}} \bigcup_{\mathrm{N}}$
P.228	$\bigcup_{\mathrm{Dr}} \mathbb{N} = \mathbb{N}$
P.229	$\bigcup_{\mathrm{Br}} N = N$
P.230	N N N N N N N N N N
P.231	$\bigcup_{\mathrm{Br}} \mathbb{N}$

Cpd No.	Structure
P.232	N S N N N N N N N N N N N N N N N N N N
P.233	$\begin{array}{c} N \\ N $
P.234	N S N N N N N N N N N N N N N N N N N N
P.235	O N N N N N N
P.236	$\bigcup_{N \to \mathbb{N}} \mathbb{N}$
P.237	F O N N N N

	Continued
Cpd No.	Structure
P.238	F O N N N N N
P.239	F O N N N N N
P.240	F O N
P.241	F O N
P.242	F O N
P.243	F O N

Cpd No.	Structure
P.244	F O N N
P.245	F O N
P.246	F O N N N N N N N N N N N N N N N N N N
P.247	N N N N N N N N N N
P.248	N N N N N N N N N N
P.249	$\bigcup_{\mathrm{Br}} \mathbb{N} \longrightarrow \mathbb{N}$
P.250	$\bigcup_{\mathrm{Br}} \mathbb{N} = \mathbb{N}$

	Continued
Cpd No.	Structure
P.251	N N N N N N N N N N
P.252	N N N N N N N N N N
P.253	CI O Br N N N N N
P.254	N N N N N N N N N N
P.255	N N N N N N N N N N
P.256	N N N N N N N N N N
P.257	$- \underbrace{\hspace{1cm} \bigvee_{N \longrightarrow N} N}_{N} \underbrace{\hspace{1cm} \bigvee_{N $

Cpd No.	Structure
P.258	F N
P.259	F O
P.260	F O N N N N
P.261	F O N
P.262	F O N
P.263	F O N

Cpd No.	Structure
P.264	$\begin{array}{c} F \\ \hline \\ F \\ \hline \\ O \\ \hline \\ O \\ \hline \\ O \\ \hline \\ N \\ \hline \\ \\ N \\ \\ \\ N \\ \\ \\ N \\ \\ \\ \\$
P.265	$\begin{array}{c} F \\ \hline \\ O \\ \hline \\ O \\ \hline \\ O \\ \hline \\ \end{array}$
P.266	$\begin{array}{c} F \\ \hline \\ F \\ \hline \\ O \\ \hline \\ O \\ \hline \\ O \\ \hline \\ O \\ \hline \\ N \\ \\ N \\ \hline \\ N \\ N \\ N \\ N \\ N \\ N \\ \\ N \\ \\ N \\ N \\ N \\ N \\ N \\ N \\ N \\ \\ N \\ \\ N \\ \\ N \\ N \\ N \\ \\ N$
P.267	F O N
P.268	F N N N
P.269	$\begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$

Cpd No.	Structure
P.270	N N N N N N N N N N
P.271	$\bigcup_{\mathrm{Br}}^{\mathrm{N}} \bigvee_{\mathrm{N}}^{\mathrm{N}}$
P.272	N N N N N N N N N N
P.273	$\begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$
P.274	$\begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$
P.275	
P.276	Br N N N

Cpd No.	Structure
P.277	$0 \longrightarrow N \longrightarrow N$ $N \longrightarrow N$ $N \longrightarrow N$
P.278	
P.279	
P.280	
P.281	r r r r r r r r r r

Cpd No.	Structure
P.282	$\bigcup_{N = 1}^{N} \sum_{N = 1}^{N} $
P.283	HO O N N N N
P.284	$\bigcap_{\mathrm{Cl}} \mathbb{N} \longrightarrow \mathbb{N}$
P.285	N N N N N N N N N N
P.286	H N N N N N
P.287	$ \begin{array}{c} $

	continued
Cpd No.	Structure
P.288	Cl N
P.289	
P.290	
P.291	Br N N
P.292	=

	continued
Cpd No.	Structure
P.293	=
P.294	$\begin{array}{c c} & & \\ $
P.295	N N N N N N N N N N
P.296	N N N N N N N N N N
P.297	N N N N N N N N N N N N N N N N N N N
P.298	N N N N N N N N N N
P.299	N N N N N N N N N N N N N N N N N N N

Cpd No.	Structure
P.300	-0 N
P.301	
P.302	
P.303	
P.304	N N N N N N N N N N
P.305	Cl O N

Cpd No.	Structure
P.306	CI—N—N—N
P.307	$\bigcap_{\mathrm{Br}}^{\mathrm{N}} \bigcap_{\mathrm{N}}^{\mathrm{N}}$
P.308	$N \longrightarrow N$ $N \longrightarrow $
P.309	$\begin{array}{c} N = \\ \\ O = \\ \\ Br \end{array}$
P.310	N N N N N N N N N N
P.311	$\begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$
P.312	N N N N N N N N N N

Cpd No.	Structure
P.313	$\begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$
P.314	N N N N N N N N N N
P.315	$= \underbrace{\hspace{1cm}}_{O} \underbrace{\hspace{1cm}}_{N} \underbrace{\hspace{1cm}}_{N} \underbrace{\hspace{1cm}}_{N} \underbrace{\hspace{1cm}}_{N} \underbrace{\hspace{1cm}}_{N}$
P.316	$\begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$
P.317	$\begin{array}{c c} & & & \\ & & \\ & & & \\ & & \\ & & \\ & & & \\ & & \\ & & & \\ & & \\ & & \\ & & & \\ & & \\ & & & \\ & &$
P.318	$\begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$
P.319	N N N N N N N N N N

	Continued
Cpd No.	Structure
P.320	F F F F F F F F F F
P.321	S N N N N N N N N N N N N N N N N N N N
P.322	
P.323	N N N N N N
P.324	F O A B N
P.325	$\begin{array}{c c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & &$

Cpd No.	Structure
P.326	
P.327	
P.328	
P.329	
P.330	

Cpd No.	Structure
P.331	
P.332	F O N
P.333	F O N
P.334	F N N N
P.335	CI N N N N N
P.336	

Cpd No.	Structure
P.337	$\bigcup_{O} \bigvee_{N} \bigvee_{N} \bigvee_{N}$
P.338	De la constant de la
P.339	
P.340	
P.341	
P.342	N N N N N N N N N N

Cpd No.	Structure
P.343	N N N N N N N N N N
P.344	N N N N N N N N N N N N N N N N N N N
P.345	N N N N N N N N N N N N N N N N N N N
P.346	
P.347	
P.348	N H N N N N N N N N N N N N N N N N N N

Cpd No.	Structure
P.349	$\bigcup_{\mathrm{Dr}} \bigvee_{\mathrm{N}} $
P.350	$\begin{array}{c} -0 \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $
P.351	O N H N
P.352	$\bigcup_{\mathrm{Br}}^{\mathrm{N}} \bigcup_{\mathrm{S}}^{\mathrm{H}} \bigcup_{\mathrm{N}}^{\mathrm{H}}$
P.353	$\bigcap_{\mathrm{Br}} \bigvee_{\mathrm{S}} \bigvee_{\mathrm{N}} \bigvee_{\mathrm{N}}$
P.354	F O N H N
P.355	F O N H N

-continued

Cpd No.	Structure
P.356	$\bigcap_{\mathrm{Br}} \bigvee_{\mathrm{S}} \bigvee_{\mathrm{N}} \bigvee_{\mathrm{N}}$
P.357	$\bigcup_{\mathrm{Br}}^{\mathrm{N}} \bigcup_{\mathrm{S}}^{\mathrm{H}} \bigcup_{\mathrm{N}}^{\mathrm{H}}$
P.358	$\bigcap_{\mathrm{Br}} \bigvee_{\mathrm{S}} \bigvee_{\mathrm{N}} \bigvee_{\mathrm{N}}$
P.359	O N H N N N
P.360	N N N N N N N N N N
P.361	

-continued

Cpd No.	Structure
P.362	
P.363	
P.364	$\begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$
P.365	$\begin{array}{c c} & & & \\ & & \\ & & & \\ & & \\ & & \\ & & & \\ & & \\ & & & \\ & & \\ & & \\ & & & \\ & & \\ & & & \\ & &$
P.366	$\begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$
P.367	
P.368	F O N H N

-continued

	VOILIMIN V
Cpd No.	Structure
P.369	$\begin{array}{c} F \\ \hline \\ F \\ \hline \\ \end{array}$
P.370	
P.371	
P.372	

Table A discloses 1201 sets of meanings of the variables $\,^{45}$ $R_1,\,R_2,\,R_5$ and R_6 in a compound of formula I.

TABLE A

Meanings for R_1 , R_2 , R_5 and R_6 :					
Line	R_1	R_2	R ₆	R ₅	
A.1.1	СН3	CH₂CH₃	Н	CI F H F	
A.1.2	CH ₃	CH ₂ CH ₃	Н	HF CI	

TABLE A-continued

	TABLE A-continued					
		Meanings 1	For R ₁ , R ₂ , R ₅	and R ₆ :		
A.1.3	CH ₃	CH ₂ CH ₃	Н	F———		
A.1.4	CH ₃	CH₂CH₃	Н	F F		
A.1.5	CH ₃	CH ₂ CH ₃	Н	F F F		
A.1.6	CH ₃	CH₂CH₃	Н	r r r r r r r r r r		
A.1.7	CH ₃	CH ₂ CH ₃	Н	r r r r r r r r r r		
A.1.8	CH ₃	CH ₂ CH ₃	Н	H_3C — S — F — F		
A.1.9	СН3	CH₂CH₃	Н	O S F		
A.1.1 0	СН3	CH₂CH₃	Н	F F		
A.1.11	CH ₃	$\mathrm{CH_{2}CH_{3}}$	Н	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		

TABLE A-continued

	TABLE A-continued						
		Meanings t	for R ₁ , R ₂ , R ₅ as	nd R ₆ :			
A.1.12	CH_3	CH ₂ CH ₃	Н				
A.1.13	СН3	CH ₂ CH ₃	Н	CI			
A.1.14	CH ₃	CH ₂ CH ₃	Н				
A.1.15	CH ₃	CH ₂ CH ₃	Н	Cl			
A.1.16	СН3	CH ₂ CH ₃	Н	CI			
A.1.17	CH ₃	$\mathrm{CH_{2}CH_{3}}$	Н	CI			
A.1.18	СН3	CH₂CH₃	Н	CI			
A.1.19	СН3	CH ₂ CH ₃	Н	CI			
A.1.20	CH ₃	CH ₂ CH ₃	Н	cı'			
A.1.21	$\mathrm{CH_3}$	CH₂CH₃	н	CI			

225

TABLE A-continued

	TABLE A-continued						
	Meanings for R_1 , R_2 , R_5 and R_6 :						
A.1.22	CH ₃	CH ₂ CH ₃	Н	CI			
A.1.23	CH ₃	CH ₂ CH ₃	Н	H ₃ C — Cl			
A.1.24	CH ₃	CH ₂ CH ₃	Н				
A.1.25	CH ₃	CH₂CH₃	Н	H ₃ C			
A.1.26	CH ₃	$\mathrm{CH_{2}CH_{3}}$	Н	CH ₃			
A.1.27	CH ₃	CH ₂ CH ₃	Н	H ₃ C Cl			
A.1.28	CH ₃	CH ₂ CH ₃	Н	H ₃ C			
A.1.29	СН3	$\mathrm{CH_{2}CH_{3}}$	Н	H ₃ C CH ₃			
A.1.30	CH ₃	CH₂CH₃	Н	H ₃ C′			
A.1.31	СН3	CH₂CH₃	Н				
A.1.32	CH ₃	CH ₂ CH ₃	Н	F E			
				F			

227
TABLE A-continued

	Meanings for R_1 , R_2 , R_5 and R_6 :					
A.1.33	CH ₃	CH ₂ CH ₃	H			
A.1.34	СН3	CH₂CH₃	Н	F F		
A.1.35	СН3	CH₂CH₃	Н	F F		
A.1.36	СН3	CH₂CH₃	Н	F F		
A.1.37	СН3	CH ₂ CH ₃	Н	F		
A.1.38	CH ₃	CH ₂ CH ₃	Н	F CI		
A.1.39	CH ₃	CH ₂ CH ₃	Н	F—Cl		
A.1.4 0	CH ₃	CH ₂ CH ₃	Н			
A.1.41	СН₃	CH₂CH₃	н	F H F		

229

TABLE A-continued

		Meanings t	For R ₁ , R ₂ , R ₅ a	and R ₆ :
A.1.42	СН3	CH ₂ CH ₃	Н	CI
A.1.43	CH ₃	CH ₂ CH ₃	Н	ci' ci
A.1.44	CH ₃	CH₂CH₃	н	
A.1.45	CH ₃	CH₂CH₃	н	F
A.1.46	CH₃	CH₂CH₃	н	F F F
A.1.47	СН3	CH₂CH₃	Н	H ₃ C
A.1.48	CH ₃	CH₂CH₃	н	H ₃ C —
A.1.49	СН3	$\mathrm{CH_{2}CH_{3}}$	н	H CH_3 H_3C CH_3

231
TABLE A-continued

		Meanings	for R ₁ , R ₂ , I	R_5 and R_6 :
A.1.50	CH ₃	CH ₂ CH ₃	Н	
A.1.51	СН3	CH₂CH₃	Н	
A.1.52	CH ₃	CH₂CH₃	Н	
A.1.53	СН3	CH₂CH₃	Н	H ₃ C
A.1.54	$\mathrm{CH_3}$	CH₂CH₃	Н	H ₃ C
A.1.55	СН3	CH₂CH₃	Н	H ₃ C — CH ₃
A.1.56	$\mathrm{CH_3}$	$\mathrm{CH_{2}CH_{3}}$	Н	\subset

233
TABLE A-continued

Meanings for R ₁ , R ₂ , R ₅ and R ₆ :					
A.1.57	CH ₃	CH ₂ CH ₃	Н		
A.1.58	CH ₃	CH₂CH₃	Н	Br'	
A.1.59	СН3	CH₂CH₃	Н	ı'	
A.1.60	СН3	CH₂CH₃	Н		
A.1.61	СН3	CH ₂ CH ₃	н		
A.1.62	CH ₃	CH ₂ CH ₃	н		
A.1.63	СН3	CH₂CH₃	Н	O—CH ₃	
A.1.64	СН3	$\mathrm{CH_{2}CH_{3}}$	н	H_3C O CH_3 H_3C	

TABLE A-continued

	TABLE A-continued					
		Meanings t	For R ₁ , R ₂ , R ₅	and R ₆ :		
A.1.65	CH ₃	$\mathrm{CH_{2}CH_{3}}$	Н	0		
A.1.66	CH ₃	CH₂CH₃	Н			
A.1.67	CH ₃	CH₂CH₃	Н	F		
A.1.68	CH ₃	CH ₂ CH ₃	Н	H ₂ N		
A.1.69	CH ₃	CH₂CH₃	Н	H ₃ C—N CH ₃ CH ₃		
A.1.70	CH ₃	CH₂CH₃	Н	$_{\text{CH}_3}$		
A.1.71	СН3	CH₂CH₃	Н	S—CH ₃		
A.1.72	СН3	CH₂CH₃	Н	CH ₃ CH ₃ F F F		

TABLE A-continued

TABLE A-continued						
		Meanings 1	For R_1 , R_2 , R_5 a	nd R ₆ :		
A.1.73	CH ₃	CH ₂ CH ₃	Н	F F		
A.1.74	CH ₃	CH₂CH₃	Н	F F		
A.1.75	СН3	CH₂CH₃	Н	H ₃ C F		
A.1.76	CH₃	CH ₂ CH ₃	Н	F F		
A.1.77	CH ₃	$\mathrm{CH_{2}CH_{3}}$	Н	Br F F		
A.1.78	CH ₃	CH ₂ CH ₃	Н	N F F		
A.1.79	CH ₃	CH₂CH₃	Н	$H_{3}C$ F F F		
A.1.80	СН3	CH₂CH₃	н	CI F F CI		

TABLE A-continued

TABLE A-continued					
		Meanings 1	for R ₁ , R ₂ , R ₅	and R_6 :	
A.1.81	CH ₃	CH ₂ CH ₃	Н	F	
A.1.82	СН3	CH ₂ CH ₃	Н	F H ₃ C CH ₃ H ₃ C	
A.1.83	CH ₃	CH ₂ CH ₃	Н	H ₃ C H ₃ C	
A.1.84	CH ₃	CH ₂ CH ₃	Н	H ₃ C H CH ₃	
A.1.85	CH ₃	CH ₂ CH ₃	Н	H_3C H_3C	
A.1.86	CH ₃	CH ₂ CH ₃	Н	CH ₃	
A.1.87	CH ₃	CH ₂ CH ₃	Н	H ₃ C CH ₃ H ₃ C CH ₃	
A.1.88	СН3	CH₂CH₃	Н	H ₃ C CH ₃	
A.1.89	СН3	CH₂CH₃	Н	H ₃ C CH ₃	
A.1.90	$\mathrm{CH_3}$	CH₂CH₃	Н	F F H_3C	

241
TABLE A-continued

TABLE A-continued					
		Meanings f	for R ₁ , R ₂ , R ₅	and R_6 :	
A.1.91	CH ₃	CH ₂ CH ₃	Н	$F \xrightarrow{F}$	
A.1.92	CH ₃	CH ₂ CH ₃	Н	F F F	
A.1.93	CH ₃	$\mathrm{CH_{2}CH_{3}}$	Н	H ₃ C H ₃ C	
A.1.94	CH ₃	CH ₂ CH ₃	Н	CI	
A.1.95	СН3	CH₂CH₃	Н		
A.1.96	$\mathrm{CH_3}$	CH₂CH₃	Н		
A.1.97	CH ₃	CH ₂ CH ₃	Н	CI	
A.1.98	$\mathrm{CH_3}$	CH₂CH₃	Н	H ₃ C	

243
TABLE A-continued

	Meanings for R ₁ , R ₂ , R ₅ and R ₆ :					
A.1.99	CH ₃	CH ₂ CH ₃	H	aliu K ₆ .		
A.1.99	CII3	CH ₂ CH ₃	11	CI		
A.1.100	СН3	CH₂CH₃	Н			
A.1.101	СН3	CH₂CH₃	Н	Br		
A.1.102	СН3	CH ₂ CH ₃	Н	OH OH		
A.1.103	СН₃	CH₂CH₃	Н	O—CH ₃		
A.1.104	СН3	CH₂CH₃	н	O—CH ₃		
A.1.105	CH ₃	CH₂CH₃	Н	O—————————————————————————————————————		
A.1.106	СН3	$\mathrm{CH_{2}CH_{3}}$	н	O \longrightarrow CH ₃ O \longrightarrow CH ₃ CH ₃ CH ₃		

245

TABLE A-continued

Meanings for R_1, R_2, R_5 and R_6 :				
A.1.107	CH ₃	CH₂CH₃	Н	O
A.1.108	СН3	CH₂CH₃	Н	CH ₃
A.1.109	СН ₃	CH₂CH₃	Н	CH_2 CH_3
A.1.110	СН3	CH₂CH₃	Н	$O \longrightarrow H$ CH_2
A.1.111	CH ₃	CH ₂ CH₃	Н	O—CH ₃
A.1.112	СН3	CH₂CH₃	Н	CH

247
TABLE A-continued

			EA-contin	
			for R ₁ , R ₂ , R ₅	; anu x ₆ :
A.1.113	СН3	CH₂CH₃	Н	
A.1.114	СН3	$\mathrm{CH_{2}CH_{3}}$	Н	O CI
A.1.115	СН3	CH₂CH₃	Н	$ \begin{array}{c} & F \\ & F \end{array} $
A.1.116	СН3	CH₂CH₃	Н	H_3C CH_3
A.1.117	CH ₃	CH ₂ CH ₃	Н	$O = \bigvee_{\substack{N \\ \text{CH}_3}}^{NH_2}$
A.1.118	CH ₃	CH ₂ CH ₃	н	$O = \bigvee_{\text{CH}_3}^{\text{N}} C_{\text{H}_3}$

249

TABLE A-continued

	TABLE A-continued						
		Meanings	for R_1 , R_2 , R_5 a	nd R ₆ :			
A.1.119	СН3	CH₂CH₃	н	$O \longrightarrow N \longrightarrow CH_2$			
A.1.120	CH ₃	CH₂CH₃	н	O—————————————————————————————————————			
A.1.121	CH ₃	CH ₂ CH ₃	Н				
A.1.122	CH ₃	$\mathrm{CH_{2}CH_{3}}$	н	H ₃ C			
A.1.123	СН3	CH ₂ CH ₃	Н	N NH			
A.1.124	CH ₃	CH ₂ CH ₃	н	N CH ₃			
A.1.125	$\mathrm{CH_3}$	CH ₂ CH ₃	н	s s NH_2			

251
TABLE A-continued

			I D		
СН3	$\mathrm{CH_{2}CH_{3}}$	Н			
СН3	$\mathrm{CH_{2}CH_{3}}$	Н	F F		
СН3	CH₂CH₃	Н	CI		
CH ₃	CH ₂ CH ₃	Н	H ₃ C CH ₃		
CH ₃	CH ₂ CH ₃	Н	H CH ₃		
СН3	CH₂CH₃	Н	H ₃ C N		
CH ₃	$\mathrm{CH_{2}CH_{3}}$	Н	H ₃ C		
	СН ₃ СН ₃	CH ₃ CH ₂ CH ₃	CH ₃ CH ₂ CH ₃ H CH ₃ CH ₂ CH ₃ H CH ₃ CH ₂ CH ₃ H CH ₃ CH ₂ CH ₃ H		

253
TABLE A-continued

		Meanings t	for R ₁ , R ₂ , R ₅ an	nd R _c :
A.1.133	СН3	CH₂CH₃	Н	
A.1.134	CH ₃	CH ₂ CH ₃	Н	
A.1.135	СН3	CH ₂ CH ₃	Н	CI
A.1.136	СН3	CH ₂ CH ₃	Н	H ₃ C
A.1.137	СН3	CH ₂ CH ₃	Н	H ₃ C
A.1.138	СН3	$\mathrm{CH_{2}CH_{3}}$	Н	Cl O

255

TABLE A-continued

	TABLE A-continued						
		Meanings	for R_1 , R_2 , R_5	and R ₆ :			
A.1.139	СН3	CH ₂ CH ₃	Н	Cl			
A.1.140	СН3	CH ₂ CH ₃	Н	F F			
A.1.141	CH ₃	CH₂CH₃	Н	F O			
A.1.142	CH ₃	CH₂CH₃	Н	CI			
A.1.143	СН3	$\mathrm{CH_{2}CH_{3}}$	Н	$H_{3}C$ $H_{3}C$			
A.1.144	CH ₃	CH ₂ CH ₃	Н	H_3C H			
A.1.145	CH ₃	CH ₂ CH ₃	Н	H_3C N			
A.1.146	CH ₃	CH₂CH₃	Н				
A.1.147	$\mathrm{CH_3}$	CH ₂ CH ₃	Н	s			

Meanings for R_1 , R_2 , R_5 and R_6 :						
A.1.148	СН3	CH₂CH₃	Н	CI		
A.1.149	СН3	CH₂CH₃	Н	F Br		
A.1.150	CH ₃	$\mathrm{CH_{2}CH_{3}}$	Н	F O CI		
A.1.151	CH ₃	CH ₂ CH ₃	Н	CI CI H ₃ C		
A.1.152	CH ₃	CH ₂ CH ₃	Н	F CI		
A.1.153	$\mathrm{CH_3}$	CH ₂ CH ₃	Н			
A.1.154	СН3	CH ₂ CH ₃	Н	H N		
A.1.155	СН₃	CH ₂ CH ₃	Н	$_{\mathrm{CH_{2}}}^{\mathrm{CH_{3}}}$		

259

TABLE A-continued

		IABL	TABLE A-continued					
		Meanings f	for R ₁ , R ₂ , R ₅	and R ₆ :				
A.1.156	СН3	CH ₂ CH ₃	Н					
A.1.157	СН3	CH ₂ CH ₃	Н	CH ₃				
A.1.158	СН3	$\mathrm{CH_{2}CH_{3}}$	Н	H ₃ C O				
A.1.159	СН3	CH₂CH₃	Н	NH NH				
A.1.160	СН3	CH₂CH₃	Н					
A.1.161	CH ₃	CH ₂ CH ₃	Н					
A.1.162	CH ₃	CH ₂ CH ₃	н	N—				
A.1.163	CH ₃	CH₂CH₃	Н					
A.1.164	СН3	CH ₂ CH ₃	Н	H_3C CH_3 H_3C CH_3 CH_3				

261

TABLE A-continued

		Meanings f	or R ₁ , R ₂ , R ₅	and R ₆ :
A.1.165	СН3	CH ₂ CH ₃	Н	H ₃ C—Si
A.1.166	CH ₃	$\mathrm{CH_{2}CH_{3}}$	Н	H ₃ C CH ₃ H ₃ C CH ₃
A.1.167	CH ₃	$\mathrm{CH_{2}CH_{3}}$	Н	H ₃ C O CH ₃ H ₃ C O Si H ₃ C O O O
A.1.168	СН3	CH₂CH₃	Н	H ₃ C — Si
A.1.169	CH_3	$\mathrm{CH_{2}CH_{3}}$	Н	H ₃ C CH ₃
A.1.170	СН,	CH₂CH₃	Н	H ₃ C—Si H ₃ C CH ₃
A.1.171	СН3	CH₂CH₃	Н	H ₃ C — Si H ₃ C CH ₃
A.1.172	CH ₃	CH₂CH₃	Н	H ₃ C — O

263
TABLE A-continued

		Meanings t	for R ₁ , R ₂ , F	₋₅ and R ₆ :
A.1.173	CH ₃	CH ₂ CH ₃	Н	
A.1.174	CH ₃	$\mathrm{CH_{2}CH_{3}}$	Н	H_3C H_3C H
A.1.175	СН3	CH ₂ CH ₃	н	H ₃ C'
A.1.176	СН3	$\mathrm{CH_{2}CH_{3}}$	н	H ₃ C O
A.1.177	СН3	CH₂CH₃	Н	H_3C H_3C O
A.1.178	CH ₃	CH ₂ CH ₃	н	H ₃ C'
A.1.179	СН3	CH ₂ CH ₃	н	

265
TABLE A-continued

	TABLE A-continued Meanings for R ₁ , R ₂ , R ₅ and R ₆ :					
				5 and R ₆ :		
A.1.180	СН3	CH₂CH₃	Н			
A.1.181	СН3	CH ₂ CH ₃	Н	H ₃ C — CH ₃		
A.1.182	СН3	CH₂CH₃	Н	F O		
A.1.183	CH ₃	CH₂CH₃	Н	F O		
A.1.184	СН3	CH ₂ CH ₃	Н	F—O		
A.1.185	CH ₃	CH₂CH₃	Н	F F		
A.1.186	СН3	CH₂CH₃	н	H ₃ C — O		
A.1.187	СН3	$\mathrm{CH_{2}CH_{3}}$	Н	N O		

TABLE A-continued

		Meanings	for R ₁ , R ₂ ,	R ₅ and R ₆ :
A.1.188	СН3	CH ₂ CH ₃	Н	H ₃ C — O — O
A.1.189	СН3	CH ₂ CH ₃	Н	
A.1.190	СН3	CH₂CH₃	Н	
A.1.191	CH ₃	CH₂CH₃	Н	
A.1.192	CH ₃	CH ₂ CH ₃	Н	
A.1.193	СН3	CH₂CH₃	Н	CI—O
A.1.194	CH_3	CH₂CH₃	Н	F F F
A.1.195	СН3	CH₂CH₃	Н	CI
				H_3C CH_3

TABLE A-continued

TABLE A-continued				
		Meanings t	For R ₁ , R ₂ , R	s ₅ and R ₆ :
A.1.196	СН3	$\mathrm{CH_{2}CH_{3}}$	Н	
A.1.197	CH ₃	CH ₂ CH ₃	Н	FO
A.1.198	СН3	CH ₂ CH ₃	Н	F
A.1.199	СН3	CH ₂ CH ₃	Н	H ₂ C
A.1.200	СН3	CH₂CH₃	Н	H ₂ C
A.1.201	$\mathrm{CH_3}$	CH ₂ CH ₃	н	H ₃ C
A.1.202	СН3	CH₂CH₃	н	H ₃ C
A.1.203	СН3	CH ₂ CH ₃	н	CI
				CI

TABLE A-continued

		Meanings t	for R ₁ , R ₂ , R ₅	and R ₆ :
A.1.204	СН3	$\mathrm{CH_{2}CH_{3}}$	Н	CI
A.1.205	CH ₃	$\mathrm{CH_{2}CH_{3}}$	Н	cı'
A.1.206	СН3	CH₂CH₃	Н	HC
A.1.207	CH ₃	$\mathrm{CH_{2}CH_{3}}$	Н	H ₃ C
A.1.208	CH_3	$\mathrm{CH_{2}CH_{3}}$	Н	HC
A.1.209	CH ₃	$\mathrm{CH_{2}CH_{3}}$	Н	

273

TABLE A-continued

		Meanings 1	for R ₁ , R ₂ , R	₅ and R ₆ :
A.1.210	$\mathrm{CH_3}$	$\mathrm{CH_{2}CH_{3}}$	Н	CH ₃
A.1.211	CH ₃	CH ₂ CH ₃	Н	H ₃ C CH ₃
A.1.212	СН3	CH ₂ CH ₃	Н	
A.1.213	СН3	CH₂CH₃	Н	$_{ m H_2C}$
A.1.214	СН3	CH₂CH₃	Н	$\begin{array}{c} H_{2}C\\ H \\ \end{array}$
A.1.215	CH₃	$\mathrm{CH_{2}CH_{3}}$	Н	$H_{3}C$

275
TABLE A-continued

		Meanings 1	for R ₁ , R ₂ , R	₅ and R ₆ :
A.1.216	СН3	CH ₂ CH ₃	Н	
A.1.217	СН3	CH₂CH₃	н	H ₃ C O
A.1.218	СН3	$\mathrm{CH_{2}CH_{3}}$	Н	H ₃ C O
A.1.219	СН3	CH₂CH₃	Н	CI.
A.1.220	CH ₃	CH₂CH₃	Н	CI
A.1.221	СН3	CH₂CH₃	н	HC
A.1.222	$\mathrm{CH_3}$	$\mathrm{CH_{2}CH_{3}}$	н	H ₃ C H ₃ C

277

TABLE A-continued

	Meanings for R_1 , R_2 , R_5 and R_6 :					
A.1.223	СН3	CH ₂ CH ₃	H	S and K ₆ .		
A.1.224	СН3	CH₂CH₃	Н			
A.1.225	СН3	CH₂CH₃	Н	CI		
A.1.226	СН3	CH₂CH₃	н	CH ₃ CH ₃		
A.1.227	$\mathrm{CH_3}$	CH₂CH₃	Н	F		
A.1.228	СН3	$\mathrm{CH_{2}CH_{3}}$	Н	F S		

279

TABLE A-continued

	TABLE A-continued						
			or R ₁ , R ₂ , R ₅				
A.1.229	CH ₃	CH ₂ CH ₃	Н	H ₃ C S			
A.1.230	CH ₃	CH ₂ CH ₃	Н	CI_S			
A.1.231	CH ₃	CH ₂ CH ₃	Н	S			
A.1.232	CH_3	CH ₂ CH ₃	Н	Н—			
A.1.233	CH ₃	CH ₂ CH ₃	Н	$_{\mathrm{H_{3}C}}$ Si—			
A.1.234	СН3	CH₂CH₃	Н	$\begin{array}{c} H_3C \\ \downarrow \\ H_3C \\ \downarrow \\ H_3C \\ \end{array} \begin{array}{c} CH_3 \\ \downarrow \\ Si \\ \end{array}$			
A.1.235	CH ₃	CH₂CH₃	Н	$^{\mathrm{CH_{3}}}$ C $^{\mathrm{CH_{3}}}$ Si $^{\mathrm{CH_{3}}}$			
A.1.236	СН3	CH ₂ CH ₃	Н	H_3C H_3C H_3C CH_3 H_3C CH_3			
A.1.237	CH ₃	CH₂CH₃	Н	H_3C Si—			
A.1.238	CH ₃	CH ₂ CH ₃	н	H_3C H_3C S_1 H_3C			
A.1.239	CH ₃	CH₂CH₃	Н	H ₃ C			
A.1.240	CH ₃	CH ₂ CH ₃	Н	H_3C CH_3 H_3C H_3C			

TABLE A-continued

	TABLE A-continued					
		Meanings f	or R ₁ , R ₂ ,	R ₅ and R ₆ :		
A.1.241	СН3	$\mathrm{CH_{2}CH_{3}}$	Н	CH ₃ Si H ₃ C		
A.1.242	$\mathrm{CH_3}$	CH₂CH₃	Н	Cl CH ₃ CH ₃ CH ₃		
A.1.243	CH ₃	CH ₂ CH ₃	Н	F F CH ₃ CH ₃ CH ₃ Si —		
A.1,244	СН3	CH ₂ CH ₃	Н	H ₃ C		
A.1.245	CH_3	CH ₂ CH ₃	Н	H ₃ C—		
A.1.246	CH ₃	CH ₂ CH ₃	Н	H ₃ C		
A.1.247	CH ₃	CH ₂ CH ₃	Н	$_{ m H_3C}$		
A.1.248	CH_3	CH ₂ CH ₃	Н	H ₃ C		
A.1.249	CH ₃	CH₂CH₃	Н	$_{ m H_3C}$		
A.1.250	CH ₃	CH₂CH₃	Н	H ₃ C		
A.1.251	$\mathrm{CH_3}$	CH ₂ CH ₃	Н	$\begin{array}{c} H \\ \\ H_3C \end{array}$		
A.1.252	СН3	CH ₂ CH ₃	Н	$_{\mathrm{H_{3}C}}$ $_{\mathrm{CH_{3}}}$		
A.1.253	CH ₃	CH ₂ CH ₃	Н	$_{\mathrm{H_{3}C}}^{\mathrm{CH_{3}}}$		
A.1.254	СН3	CH ₂ CH ₃	Н	H ₃ C CH ₃		

283

TABLE A-continued

TABLE A-continued Meanings for R_1 , R_2 , R_5 and R_6 :							
				H ₃ C			
A.1.256	CH_3	$\mathrm{CH_{2}CH_{3}}$	Н	H_3C			
				$_{ m CH_3}$			
A.1.257	CH_3	$\mathrm{CH_{2}CH_{3}}$	Н	H_3C			
				H ₃ C CH ₃			
A.1.258	CH_3	$\mathrm{CH_{2}CH_{3}}$	Н	H ₃ C			
A 1 250	OH.	OH OH	11	CH ₃			
A.1.259	CH ₃	CH ₂ CH ₃	Н	$_{\mathrm{H}}^{\mathrm{H_{3}C}}$ $_{\mathrm{CH_{3}}}$ $_{\mathrm{CH_{3}}}$			
A.1.260	CH ₃	CH ₂ CH ₃	Н	Cl			
A.1.261	CH ₃	CH ₂ CH ₃	Н	Cl			
A.1.262	CH ₃	CH₂CH₃	Н	CI			
A.1.263	СН3	CH ₂ CH ₃	Н	CI			
A.1.264	CH ₃	CH ₂ CH ₃	Н	CI			
A.1.265	CH ₃	CH ₂ CH ₃	Н	CI			
A.1.266	СН3	CH ₂ CH ₃	Н	CI CI CI			
A.1.267	СН3	CH ₂ CH ₃	Н	Cl H ₃ C Cl			
A.1.268	CH ₃	$\mathrm{CH_{2}CH_{3}}$	Н	Cl CH ₃			
A.1.269	СН ₃	CH ₂ CH ₃	Н	CI			

285
TABLE A-continued

TABLE A-continued								
Meanings for R_1 , R_2 , R_5 and R_6 :								
A.1.270	CH ₃	CH ₂ CH ₃	Н	F F				
A.1.271	CH ₃	CH ₂ CH ₃	Н	F F				
A.1.272	CH ₃	CH ₂ CH ₃	Н	F CH ₃				
A.1.273	CH ₃	CH ₂ CH ₃	Н					
A.1.274	CH ₃	CH ₂ CH ₃	Н					
A.1.275	СН3	CH ₂ CH ₃	Н	$_{ m H_3C}$				
A.1.276	$\mathrm{CH_3}$	CH ₂ CH ₃	Н	H ₃ C				
A.1.277	CH ₃	CH ₂ CH ₃	Н	$_{ m H_3C}$				
A.1.278	CH ₃	CH ₂ CH ₃	Н					
A.1.279	СН3	CH ₂ CH ₃	Н	$_{ m H_{3}C}$				
A.1.280	CH ₃	CH₂CH₃	Н	$_{ m H_3C}$				
A.1.281	СН3	CH ₂ CH ₃	Н	H ₃ C H ₃ C				
A.1.282	СН3	CH ₂ CH ₃	Н	H ₃ C —				
A.1.283	СН3	CH ₂ CH ₃	Н					

287
TABLE A-continued

	TABLE A-continued					
		Meanings f	or R ₁ , R ₂ , R ₅ a	and R ₆ :		
A.1.284	CH ₃	CH ₂ CH ₃	Н	$_{ m H_{3}C}$		
A.1.285	СН3	CH ₂ CH ₃	Н			
A.1.286	CH ₃	CH ₂ CH ₃	Н			
A.1.287	CH_3	CH ₂ CH ₃	Н			
A.1.288	СН3	CH₂CH₃	Н			
A.1.289	CH ₃	$\mathrm{CH_{2}CH_{3}}$	Н	H ₃ C		
A.1.290	CH ₃	CH ₂ CH ₃	Н	H ₃ C		
A.1.291	СН3	CH₂CH₃	Н	Cl		
A.1.292	CH ₃	CH ₂ CH ₃	Н			
A.1.293	$\mathrm{CH_3}$	CH ₂ CH ₃	Н	$_{ m H_{3}C}$		
A.1.294	CH ₃	CH ₂ CH ₃	Н	H_3C		

289

TABLE A-continued

	TABLE A-continued					
		Meanings t	or R ₁ , R ₂ , R ₅ and	nd R ₆ :		
A.1.295	СН3	CH₂CH₃	Н	H ₃ C CH ₃		
A.1.296	CH ₃	CH ₂ CH ₃	Н	CI		
A.1.297	СН3	CH₂CH₃	Н	Cl		
A.1.298	СН3	CH ₂ CH ₃	Н	CI		
A.1.299	$\mathrm{CH_3}$	CH₂CH₃	н	CI		
A.1.3 00	CH ₃	CH₂CH₃	Н	$H_{3}C$ $H_{3}C$ $H_{3}C$		
A.1.301	CH ₃	CH ₂ CH ₃	Н	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		
A.1.302	CH ₃	CH ₂ CH ₃	Н	H_3C H_3C H_3C H_3C H_3C H_3C		
A.1.303	$\mathrm{CH_3}$	CH₂CH₃	Н	CH ₃		
A.1.304	CH ₃	CH ₂ CH ₃	Н	CH ₃		

TABLE A-continued

	TABLE A-continued				
		Meanings f	or R ₁ , R ₂ , R ₅	and R ₆ :	
A.1.305	CH ₃	CH ₂ CH ₃	Н	CH ₃ Si H ₃ C	
A.1.306	СН3	CH ₂ CH ₃	Н	CH ₃	
A.1.307	СН3	CH ₂ CH ₃	Н	CH_3 H_3C CH_3 CH_3	
A.1.308	CH ₃	$\mathrm{CH_{2}CH_{3}}$	Н	H ₃ C CH ₃ H ₃ C Si	
A.1.309	СН3	CH ₂ CH ₃	Н	H_3C CH_3 H_3C CH_3 CH_3	
A.1.310	CH ₃	CH₂CH₃	Н	H_3C CH_3 CH_3 CH_3 CH_3	
A.1.311	CH₃	CH₂CH₃	Н	CH ₃	
A.1.312	СН3	CH₂CH₃	Н	$_{\mathrm{H_{3}C}}$ $_{\mathrm{Si}}$ $_{\mathrm{H_{3}C}}$	
A.1.313	СН3	CH ₂ CH ₃	Н	H_3C CH_3 CH_3 CH_3	
A.1.314	CH_3	$\mathrm{CH_{2}CH_{3}}$	Н	H_3C CH_3 H_3C Si H_3C	

TABLE A-continued				
		Meanings f	or R ₁ , R ₂ , R ₅	and R ₆ :
A.1.315	CH ₃	CH ₂ CH ₃	Н	H ₃ C H ₃ C Si
A.1.316	СН3	CH ₂ CH ₃	Н	H_3C H_3C Si H_3C H_3C
A.1.317	CH ₃	CH ₂ CH ₃	Н	H ₂ C
A.1.318	CH ₃	CH ₂ CH ₃	Н	H ₃ C
A.1.319	CH ₃	$\mathrm{CH_{2}CH_{3}}$	Н	H ₃ C
A.1.320	CH_3	CH ₂ CH ₃	Н	H ₃ C
A.1.321	CH ₃	CH ₂ CH ₃	Н	$_{\mathrm{H_{3}C}}$ $\overset{\mathrm{H}}{\underbrace{\hspace{1cm}}}^{\mathrm{CH_{3}}}$
A.1.322	CH ₃	CH ₂ CH ₃	Н	CI
A.1.323	CH ₃	CH ₂ CH ₃	Н	CI
A.1.324	СН3	CH ₂ CH ₃	Н	H ₃ C CH ₃
A.1.325	CH ₃	CH ₂ CH ₃	Н	$_{\mathrm{H_{2}C}}$
A.1.326	CH ₃	CH ₂ CH ₃	Н	H ₃ C ————————————————————————————————————
A.1.327	CH ₃	CH ₂ CH ₃	Н	

295

TABLE A-continued

	TABLE A-continued					
		Meanings t	for R ₁ , R ₂ , R	5 and R ₆ :		
A.1.328	СН3	CH₂CH₃	Н	CI		
A.1.329	CH ₃	$\mathrm{CH_{2}CH_{3}}$	Н	F F		
A.1.330	CH ₃	CH ₂ CH ₃	Н			
A.1.331	CH_3	CH ₂ CH ₃	Н	H ₂ C		
A.1.332	CH ₃	CH ₂ CH ₃	Н	$_{ m H_3C}$ $_{ m CH_3}$		
A.1.333	$\mathrm{CH_3}$	CH ₂ CH ₃	Н	H ₃ C		
A.1.334	CH ₃	CH ₂ CH ₃	Н			
A.1.335	СН3	CH ₂ CH ₃	Н	H_2C		
A.1.336	СН3	CH₂CH₃	Н	H ₂ C H ₃ C		
A.1.337	СН3	CH ₂ CH ₃	Н	H ₃ C — O		
A.1.338	СН3	CH ₂ CH ₃	Н	H ₃ C O		
A.1.339	СН3	CH₂CH₃	Н	H ₃ CO		
A.1.340	CH ₃	CH₂CH₃	Н	H_{3C} O H_{3C}		

297
TABLE A-continued

		TABL	E A-c ontinu	ied
		Meanings	for R ₁ , R ₂ , R ₅ a	and R ₆ :
A.1.341	CH ₃	CH ₂ CH ₃	Н	H ₃ C O
A.1.342	CH ₃	CH ₂ CH ₃	Н	H ₃ C O
A.1.343	СН3	CH ₂ CH ₃	Н	$_{\mathrm{H_{3}C}}$ $_{\mathrm{CH_{3}}}$ $_{\mathrm{O}}$
A.1.344	CH ₃	CH₂CH₃	Н	H ₃ C
A.1.345	CH ₃	CH ₂ CH ₃	Н	H ₂ C
A.1.346	$\mathrm{CH_3}$	CH ₂ CH ₃	Н	H ₃ C O
A.1.347	CH ₃	CH ₂ CH ₃	Н	H_3C H_3C O
A.1.348	CH ₃	CH ₂ CH ₃	Н	НО
A.1.349	$\mathrm{CH_3}$	CH ₂ CH ₃	Н	H ₃ C O
A.1.350	СН3	CH ₂ CH ₃	Н	H ₃ C
A.1.351	СН3	CH ₂ CH ₃	Н	$_{\mathrm{H_{3}C}}$ $_{\mathrm{CH_{3}}}$
A.1.352	CH ₃	CH ₂ CH ₃	Н	$_{\mathrm{H_{3}C}}^{\mathrm{H_{3}C}}$ $_{\mathrm{C}}^{\mathrm{CH_{3}}}$
A.1.353	CH ₃	CH ₂ CH ₃	Н	H ₂ C

299

TABLE A-continued

	TABLE A-continued					
		Meanings t	For R ₁ , R ₂ , R ₅	and R ₆ :		
A.1.354	CH ₃	CH ₂ CH ₃	Н	H ₂ C O		
A.1.355	СН3	CH ₂ CH ₃	Н	H ₃ C O		
A.1.356	CH ₃	CH ₂ CH ₃	Н			
A.1.357	$\mathrm{CH_3}$	CH ₂ CH ₃	Н	$^{\mathrm{H_{2}C}}$ $^{\mathrm{CH_{3}}}$ $^{\mathrm{CH_{3}}}$		
A.1.358	$\mathrm{CH_3}$	CH ₂ CH ₃	Н	H_3C CH_3 CH_3 CH_3		
A.1.359	CH ₃	CH ₂ CH ₃	Н	H_3C CH_3 CH_3		
A.1.360	CH ₃	CH ₂ CH ₃	Н	O CH ₃		
A.1.361	СН3	CH ₂ CH ₃	Н			
A.1.362	$\mathrm{CH_3}$	CH ₂ CH ₃	Н	H ₂ C CH ₃		
A.1.363	СН3	CH ₂ CH ₃	Н	H ₃ C — CH ₃		
A.1.364	$\mathrm{CH_3}$	CH₂CH₃	Н	CI		

301
TABLE A-continued

Meanings for R_1 , R_2 , R_5 and R_6 :				
A.1.365	СН3	CH ₂ CH ₃	Н	CI
A.1.366	CH ₃	CH₂CH₃	Н	
A.1.367	CH ₃	CH₂CH₃	Н	CI
A.1.368	CH ₃	$\mathrm{CH_{2}CH_{3}}$	Н	F F
A.1.369	CH ₃	CH ₂ CH ₃	Н	
A.1.370	СН3	CH ₂ CH ₃	Н	CI
A.1.371	CH ₃	CH₂CH₃	Н	H ₃ C O
A.1.372	CH ₃	CH ₂ CH ₃	Н	H ₃ C CH ₃
A.1.373	CH ₃	CH ₂ CH ₃	Н	H ₃ C H O

303

TABLE A-continued

TABLE A-continued					
		Meanings t	For R ₁ , R ₂ , R ₅	5 and R ₆ :	
A.1.374	CH ₃	CH ₂ CH ₃	Н	H_3C H_3C CH_3	
A.1.375	СН3	CH₂CH₃	Н	H ₃ C O CH ₃	
A.1.376	CH ₃	CH₂CH₃	Н	H_2C O	
A.1.377	СН3	CH₂CH₃	Н	H ₃ C O CH ₃	
A.1.378	CH ₃	CH ₂ CH ₃	Н	$\stackrel{\circ}{\smile}$	
A.1.379	СН3	CH ₂ CH ₃	Н		
A.1.380	CH ₃	CH ₂ CH ₃	Н	H ₃ C O	
A.1.381	СН3	$\mathrm{CH_{2}CH_{3}}$	Н	H ₃ C	
A.1.382	CH ₃	CH₂CH₃	Н	HS	
A.1.383	CH ₃	CH ₂ CH ₃	Н	H ₃ C S	
A.1.384	CH ₃	CH ₂ CH ₃	Н	H ₃ C	
A.1.385	СН3	CH ₂ CH ₃	Н	$_{\mathrm{H_{3}C}}$ $_{\mathrm{S}}$	
A.1.386	CH ₃	CH ₂ CH ₃	Н	H ₃ C CH ₃	

TABLE A-continued

TABLE A-continued					
		Meanings t	for R ₁ , R ₂ , R ₅	and R ₆ :	
A.1.387	CH ₃	CH ₂ CH ₃	Н	H ₂ C	
A.1.388	СН3	CH₂CH₃	Н	$_{\mathrm{H_{3}C}}$ $_{\mathrm{S}}$ $_{\mathrm{C}}$	
A.1.389	CH ₃	CH₂CH₃	Н	H ₃ C H ₃ C S	
A.1.390	СН3	CH₂CH₃	Н	O H_3C H_3C H_3C	
A.1.391	CH_3	CH ₂ CH ₃	Н	H_3C H_2C CH_3 CH_3	
A.1.392	CH ₃	CH ₂ CH ₃	Н	H_3C CH_3 CH_3 CH_3	
A.1.393	$\mathrm{CH_3}$	CH ₂ CH ₃	Н	CH ₃ CH ₃	
A.1.394	CH ₃	CH ₂ CH ₃	Н	s	
A.1.395	CH ₃	CH ₂ CH ₃	Н		
A.1.396	CH ₃	CH ₂ CH ₃	Н		
				O	

307
TABLE A-continued

TABLE A-continued					
		Meanings t	for R ₁ , R ₂ , R	₅ and R ₆ :	
A.1.397	CH ₃	CH ₂ CH ₃	Н	H_3C CH_3 S	
A.1.398	СН3	CH ₂ CH ₃	Н	H ₃ C CH ₃ S S	
A.1.399	CH ₃	CH₂CH₃	Н		
A.1.400	СН3	CH ₂ CH ₃	Н	CI	
A.1.401	CH ₃	CH ₂ CH ₃	Н	$F \xrightarrow{F} S \longrightarrow S$	
A.1.402	СН3	CH ₂ CH ₃	Н		
A.1.403	CH ₃	CH ₂ CH ₃	Н	CI	
A.1.404	CH ₃	$\mathrm{CH_{2}CH_{3}}$	Н	H ₃ C s	
A.1.405	CH ₃	CH ₂ CH ₃	Н	H_3C $H \longrightarrow S$ CH_3 H_3C	

309

TABLE A-continued

TABLE A-continued Meanings for R_1 , R_2 , R_5 and R_6 :				
A.1.406	CH ₃	CH₂CH₃	Н	H ₃ C S
A.1.407	CH ₃	CH ₂ CH ₃	Н	H_3C H_3C H_3C CH_3
A.1.408	CH_3	$\mathrm{CH_{2}CH_{3}}$	Н	CI
A.1.409	СН3	CH ₂ CH ₃	Н	CI—
A.1.410	СН3	CH ₂ CH ₃	Н	H ₃ C O H
A.1.411	CH_3	$\mathrm{CH_{2}CH_{3}}$	Н	$H_{3}C$ O $H_{3}C$
A.1.412	CH ₃	CH ₂ CH ₃	Н	H ₃ C — S
A.1.413	СН3	CH₂CH₃	Н	H ₃ C — S CH ₃
A.1.414	CH ₃	$\mathrm{CH_{2}CH_{3}}$	Н	H ₃ C CH ₃
A.1.415	$\mathrm{CH_3}$	CH ₂ CH ₃	Н	S Cn3
A.1.416	СН3	CH ₂ CH ₃	Н	HC

311
TABLE A-continued

TABLE A-continued Meanings for R_1 , R_2 , R_5 and R_6 :				
			A.1.417	CH ₃
A.1.418	СН3	CH ₂ CH ₃	Н	HC H ₃ C
A.1.419	CH ₃	CH ₂ CH ₃	Н	H ₃ C
A.1.420	СН3	CH ₂ CH ₃	Н	H ₃ C H ₃ CH ₃
A.1.421	CH ₃	CH ₂ CH ₃	Н	
A.1.422	$\mathrm{CH_3}$	CH₂CH₃	Н	H ₃ C
A.1.423	CH ₃	CH ₂ CH ₃	Н	CI
A.1.424	СН3	CH ₂ CH ₃	Н	Cl
A.1.425	СН3	$\mathrm{CH_{2}CH_{3}}$	Н	CI
A.1.426	CH ₃	$\mathrm{CH_{2}CH_{3}}$	Н	CI

313
TABLE A-continued

Meanings for R_1 , R_2 , R_5 and R_6 :				
A.1.427	СН3	CH ₂ CH ₃	Н	Cl
A.1.428	CH ₃	$\mathrm{CH_{2}CH_{3}}$	Н	Cl
A.1.429	CH ₃	CH₂CH₃	Н	F F
A.1.430	CH ₃	CH ₂ CH ₃	Н	$F \xrightarrow{F} F$
A.1.431	CH ₃	CH ₂ CH ₃	Н	F F
A.1.432	CH ₃	CH ₂ CH ₃	Н	
A.1.433	CH ₃	CH₂CH₃	Н	
A.1.434	CH ₃	CH ₂ CH ₃	Н	CH ₃
A.1.435	СН3	CH ₂ CH ₃	Н	H ₃ C N

TABLE A-continued

		TABLI	E A-c ontinu	ned	
	Meanings for R_1 , R_2 , R_5 and R_6 :				
A.1.436	СН3	CH ₂ CH ₃	Н	S	
Line	—- N,	R_6 R_2		R_5	
A.1.437	N	CH ₃ CH ₃		Cl————————————————————————————————————	
A.1.438		$-N$ CH_3 CH_3		CI F F	
A.1.439	— _N	CH ₃		CI————————————————————————————————————	
A.1.440	N	-NCH ₃		CI F F	
A.1.441	— _N /	\searrow N		Cl————————————————————————————————————	
A.1.442	— _N	\sim N \sim CH ₃		Cl————————————————————————————————————	
A.1.443	—-й	N		Cl F F	

TABLE A-continued		
	Meanings for R ₁ , I	R ₂ , R ₅ and R ₆ :
A.1.444	$-N$ CH_3	CI
A.1.445	$-N$ CH_3 CH_3 CH_3	F F
A.1.446	\sim N CH ₃ CH ₃ \sim CH ₃	F F
A.1.447	$-N$ $-N$ $-CH_3$ $-CH_3$	F F F
A.1.448	$-N$ CH_3 ECH	CI————————————————————————————————————
A.1.449	CH_3 H_3C H CH	CI F F
A.1.450	\sim N \sim CH ₃ \sim CH ₃ \sim CH ₃	CI F F
A.1.451	$-N$ CH_3 CH_3	CI F F
A.1.452		CI F F

TABLE A-continued

	Meanings for R ₁ , R ₂	
A.1.453	$-N$ CH_3	CI————————————————————————————————————
A.1.454		F F
A.1.455		F F
A.1.456		F F
A.1.457		F F
A.1.458	$-N$ H_3C	F F
A.1.459	N H_3C	F' F CI
A.1.460	N N CH ₃	F F
A.1.461	$-N$ CH_3 CH_3	Cl F F

TABLE A-continued

TABLE A-continued Meanings for R_1 , R_2 , R_5 and R_6 :			
A.1.462			
	NH_2	CI——()—	
		F—	
		$F \longrightarrow F$	
A.1.463	— _N ,		
	H N	CI————————————————————————————————————	
	ightharpoons CH ₃	F—	
		F	
A.1.464	— N		
	H CH ₃	Cl	
	City	F——	
		F F	
A.1.465	—_NH	CI	
		>/	
	W _N	F	
A.1.466	$_{ m CH_3}$	F F	
1111100	$-N$ CH_3	CI— — —	
	N CH ₃	/	
	ightharpoonupCH ₃	$F \longrightarrow F$	
A.1.467	$^{ m CH_2}$		
	_N/	CI—	
	\sim CH ₃	F	
	v	F F	
A.1.468	H	Cl	
	\sim CH ₃		
		F	
		f F	
A.1.469	N	CI—//	
	N	>	
	ightharpoons CH ₃	$F \xrightarrow{F} F$	
A.1.470	, N		
	_ _N //	C1——	
		F	
	\sim CH ₃	$\stackrel{\text{r}}{\longrightarrow}_F$	

Meanings for R_1 , R_2 , R_5 and R_6 :		
A 1 471		, Ky and Kg.
A.1.471	N N CH_3	CI
A.1.472	-N	F F
A.1.473	CH_3 O N^+ O CH_3	F F
A.1.474	-N CH ₃	F F
A.1.475	$-N$ CH_3 CH_3	F F H ₃ C H H ₃ C
A.1.476	$-N$ CH_3 CH_3	H ₃ C H ₃ C
A.1.477	-N_CH ₃	H ₃ C H ₃ C
A.1.478	CH ₂	H_3C H_3C
A.1.479	-N	$H_{3}C$ $H_{3}C$
A.1.480	$-N$ N CH_3	H ₃ C H ₃ C
A.1.481		H ₃ C H H ₃ C

TABLE A-continued		
	Meanings for R ₁ , R ₂	₂ , R ₅ and R ₆ :
A.1.482	$-N$ CH_3	H ₃ C H H ₃ C
A.1.483	$-N$ CH_3 CH_3	H ₃ C H ₃ C
A.1.484	\sim N CH ₃ CH ₃ \sim CH ₃	H ₃ C H ₃ C
A.1.485	N H_3C CH_3	H ₃ C H H ₃ C
A.1.486	$-N$ CH_3 CH	H ₃ C H H ₃ C
A.1.487	\sim N CH ₃ \sim CH \sim CH	H_3C H_3C
A.1.488	CH ₃ CH ₃ CH ₃	$_{\mathrm{H_{3}C}}$
A.1.489	$-N$ CH_3 CH_3	H ₃ C H H ₃ C
A.1.490		H ₃ C H H ₃ C
A.1.491	N N CH_3	$_{\mathrm{H_{3}C}}^{\mathrm{H_{3}C}}$
A.1.492		H ₃ C H H ₃ C
A.1.493		H_3C H_3C

TABLE A-continued

IABLE A-continued		
	Meanings for R ₁ , R	
A.1.494		$_{ m H_{3C}}$
A.1.495	-N N S	$_{ m H_{3}C}$
A.1.496	$-N$ H_3C	H_3C H_3C
A.1.497	N H ₃ C	H_3C H_3C
A.1.498	\sim N \sim CH ₃	H_3C H_3C
A.1.499	$-N$ CH_3 CH_3	H_3C H_3C
A.1.500	$-$ N $_{ m NH_2}$	$_{ m H_{3}C}$
A.1.501	$-N$ H CH_3	$_{\mathrm{H_{3}C}}^{\mathrm{H_{3}C}}$
A.1.502	$-N$ H CH_3	$_{\mathrm{H_{3}C}}^{\mathrm{H_{3}C}}$
A.1.503		H_3C H_3C
A.1.504	$\begin{array}{c} O \\ \\ CH_3 \\ CH_3 \\ CH_3 \end{array}$	H_3C H_3C
A.1.505	$-N$ CH_2 CH_3	H_3C H_3C

	Meanings for R_1 , R_2 , R_5 and R_6 :		
A.1.506	$-N$ H CH_3	H ₃ C H ₃ C	
A.1.507	N CH_3	H_3C H_3C	
A.1.508	$-N$ N CH_3	H_3C H_3C	
A.1.509	NSCH ₃	H_3C H H_3C	
A.1.510	$-N$ CH_2 CH_3	H_3C H_3C	
A.1.511	NCH3	H_3C H_3C	
A.1.512	N CH ₃	H_3C H_3C	
A.1.513	\sim N CH ₃ \sim CH ₃ \sim CH ₃	CI————————————————————————————————————	
A.1.514	CH ₃	CI————————————————————————————————————	

TABLE A-continued

Meanings for R_1 , R_2 , R_5 and R_6 :		
A.1.515	—N_CH ₃	CI F F
A.1.516	\sim N CH ₃ CH ₃ \sim CH ₃	CI
A.1.517	\sim N CH ₃ CH ₃ \sim CH ₃	CI
A.1.518	\sim N CH ₃ \sim CH ₃ \sim CH ₃	$_{ m H_3C}$ $_{ m CH_3}$
A.1.519	$-N$ CH_3 CH_3 H_3C H	F
A.1.520	\sim N CH ₃ CH ₃ \sim CH ₃	H_3C H_3C
A.1.521	$-N$ CH_3 CH_3	
A.1.522	$-N$ CH_3 CH_3	$_{\mathrm{H_{3}C}}^{\mathrm{H_{3}C}}$
A.1.523	$-N$ CH_3 CH_3	
A.1.524	$-N$ CH_3 CH_3	CH3-O
A.1.525	—N_O—CH ₃	H_3C H_3C

Meanings for R_1 , R_2 , R_5 and R_6 :		
A.1.526	N CH ₃	H ₃ C
A.1.527	$-N$ CH_3 CH_3	CH ₃
A.1.528	CH ₃	F
A.1.529	CH ₃	CI CH ₃
A.1.530	$-N$ CH_3 CH_3	$\bigvee_{\mathrm{F}}^{\mathrm{CH}_{3}}$
A.1.531	$-N$ CH_3 CH_3	$H_{3}C$
A.1.532	$-N$ CH_3 CH_3	CH_3
A.1.533	$-N$ CH_3 CH_3	CH_3
A.1.534	$-N$ CH_3 CH_3	
A.1.535	$-N$ CH_3 CH_3	$_{ m H_{3}C}$
A.1.536	N CH ₃	H ₃ C

TABLE A-continued Meanings for R_1 , R_2 , R_5 and R_6 :		
	Meanings for K ₁ , K	-2, K ₅ and K ₆ :
A.1.537	$-N$ CH_3 CH_3	H ₃ C
A.1.538	\sim N CH ₃ CH ₃	H ₃ C
A.1.539	$-N$ CH_3 CH_3	H ₃ C
A.1.540	$-N$ CH_3 CH_3	H_3C CH_2
A.1.541	\sim N CH ₃ CH ₃	H ₃ C
A.1.542	$-N$ CH_3 CH_3	F
A.1.543	$-N$ CH_3 CH_3	
A.1.544	\sim N CH ₃ CH ₃ \sim CH ₃	
A.1.545	\sim N \sim CH ₃ \sim CH	
A.1.546	$-N$ CH_3 CH_3	#
A.1.547	N CH ₃	#

Meanings for R_1 , R_2 , R_5 and R_6 :		
A.1.548	\sim N \sim CH ₃ \sim CH ₃	#
A.1.549	CH ₃ CH ₃ CH ₃	#
A.1.550	CH ₃	#
A.1.551	$-N$ CH_3 CH_3	#
A.1.552	\sim N \sim CH ₃ \sim CH ₃	#
A.1.553	$-N$ CH_3 CH_3	#
A.1.554	$-N$ CH_3 CH_3	#
A.1.555	CH ₃	#
A.1.556	CH ₃	#

TABLE A-continued Meanings for R_1 , R_2 , R_5 and R_6 :		
A.1.557	CH ₃	#
A.1.558	CH ₃	#
A.1.559	$-N$ CH_3 CH_3	#
A.1.560	CH ₃	#
A.1.561	$-N$ CH_3 CH_3	#
A.1.562	CH ₃	#
A.1.563	CH ₃	#
A.1.564	$-N$ CH_3 CH_3	#

TABLE A-continued

TABLE A-continued Meanings for R_1 , R_2 , R_5 and R_6 :		
A.1.565	Nearings for K ₁ , K ₂ ,	# #
	\sim CH $_3$	**
A.1.566	$-N$ CH_3 CH_3	#
A.1.567	$-N$ CH_3 CH_3	#
A.1.568	$-N$ CH_3 CH_3	#
A.1.569	-N_CH ₃ CH ₃	#
A.1.570	CH ₃	#
A.1.571	$-N$ CH_3 CH_3	#
A.1.572	$-N$ CH_3 CH_3	#

TABLE A-continued

TABLE A-continued Meanings for R ₁ , R ₂ , R ₅ and R ₆ :		
A.1.573	N CH ₃	#
A.1.574	\sim N \sim CH ₃ \sim CH ₃	#
A.1.575	\sim N CH ₃ \sim CH ₃	Cl #
A.1.576	\sim N CH ₃ CH ₃	#
A.1.577	$-N$ CH_3 CH_3	# C1
A.1.578	CH ₃	# Cl
A.1.579	$-N$ CH_3 CH_3	# CI
A.1.580	CH ₃	# Cl

Meanings for R ₁ , R ₂ , R ₅ and R ₆ :		
A.1.582	N CH ₃ CH ₃	Cl #
A.1.583	CH ₃ CH ₃	# Cl Cl
A.1.584	\sim N CH ₃ CH ₃	Cl # Cl
A.1.585	$-N$ CH_3 CH_3	Cl # Cl
A.1.586	$-N$ CH_3 CH_3	# F
A.1.587	$-N$ CH_3 CH_3	# F
A.1.588	N CH ₃ CH ₃	# F

Meanings for R ₁ , R ₂ , R ₅ and R ₆ :		
A.1.589	N_CH ₃	# F
A.1.590	\sim N CH ₃ CH ₃	F #
A.1.591	$-N$ CH_3 CH_3	F #
A.1.592	\sim N CH ₃ CH ₃	# F
A.1.593	$-N$ CH_3 CH_3	# F
A.1.594	$-N$ CH_3 CH_3	# F
A.1.595	$-N$ CH_3 CH_3	# Br
A.1.596	$-N$ CH_3 CH_3	#
A.1.597	$-N$ CH_3 CH_3	# N
A.1.598	CH ₃	#

TABLE A-continued

Meanings for R ₁ , R ₂ , R ₅ and R ₆ :		
A.1.600	CH ₃	#
A.1.601	N CH ₃ CH ₃	# N
A.1.602	CH ₃	#
A.1.603	CH ₃	# F
A.1.604	CH ₃	# F
A.1.605	\sim N \sim CH ₃ \sim CH ₃	# F————————————————————————————————————
A.1.606	CH ₃	F # F

Meanings for R ₁ , R ₂ , R ₅ and R ₆ :		
A.1.607	CH ₃	#
A.1.608	N CH ₃	F #
A.1.609	CH ₃	F #
A.1.610	N CH ₃ CH ₃	F F
A.1.611	CH ₃	F F # C1
A.1.612	CH ₃ CH ₃	#CI
A.1.613	CH ₃	CI—#
A.1.614	N CH ₃	CI—#

Meanings for R_1 , R_2 , R_5 and R_6 :		
A.1.615	CH ₃	CI—#
A.1.616	CH ₃	# CI
A.1.617	$-N$ CH_3 CH_3	# CI
A.1.618	CH ₃	# F
A.1.619	CH ₃	# F
A.1.620	$-N$ CH_3 CH_3	# F
A.1.621	CH ₃	# F
A.1.622	CH ₃	# Br

TABLE A-continued

TABLE A-continued Meanings for R_1 , R_2 , R_5 and R_6 :		
A.1.623	\sim N \sim CH ₃ \sim CH ₃	#
A.1.624	CH ₃	# #
A.1.625	\sim	#
A.1.626	N CH ₃ CH ₃	N #
A.1.627	$-N$ CH_3 CH_3	# S#
A.1.628	CH ₃	"# "S—
A.1.629	CH ₃	# S
A.1.630	CH ₃	# O— F

Meanings for R ₁ , R ₂ , R ₅ and R ₆ :		
A.1.631	N CH ₃ CH ₃	#
A.1.632	$-N$ CH_3 CH_3	#
A.1.633	$-N$ CH_3 CH_3	#
A.1.634	\sim N \sim CH ₃ \sim CH ₃	H_{2N}
A.1.635	\sim N CH ₃ CH ₃	$\#$ H_2N
A.1.636	\sim N CH ₃ CH ₃	# O HN
A.1.637	N CH ₃ CH ₃	# O N

TABLE A-continued

Meanings for R ₁ , R ₂ , R ₅ and R ₆ :		
A.1.638	CH ₃ CH ₃	# O
A.1.639	CH ₃	#
A.1.640	CH ₃	# CI
A.1.641	N CH ₃	# Cl
A.1.642	CH ₃ CH ₃	# Cl
A.1.643	$-N$ CH_3 CH_3	#
A.1.644	$-N$ CH_3 CH_3	#
A.1.645	\sim N \sim CH ₃ \sim CH ₃	#
A.1.646	$-N$ CH_3 CH_3	#

TABLE A-continued

Meanings for R ₁ , R ₂ , R ₅ and R ₆ :		
A.1.647	$-N$ CH_3 CH_3	#
A.1.648	$-N$ CH_3 CH_3	#
A.1.649	$-N$ CH_3 CH_3	#
A.1.650	$-N$ CH_3 CH_3	#
A.1.651	CH ₃	#
A.1.652	$-N$ CH_3 CH_3	#
A.1.653	CH ₃	#
A.1.654	CH ₃	CI #
A.1.655	$-N$ CH_3 CH_3	CI #
A.1.656	$-N$ CH_3 CH_3	Cl—#
A.1.657	$-N$ CH_3 CH_3	Cl—#

TABLE A-continued

Meanings for R ₁ , R ₂ , R ₅ and R ₆ :		
A.1.658	$-N$ CH_3 CH_3	\#
A.1.659	\sim N CH ₃ CH ₃	—O
A.1.660	$-N$ CH_3 CH_3	#
A.1.661	\sim N CH ₃ CH ₃	# F
A.1.662	\sim N CH ₃ CH ₃	#
A.1.663	$-N$ CH_3 CH_3	F—#
A.1.664	N CH ₃	F F
A.1.665	\sim N \sim CH ₃ \sim CH ₃	CI #
A.1.666	CH ₃	CI #
A.1.667	$-N$ CH_3 CH_3	N #

Meanings for R ₁ , R ₂ , R ₅ and R ₆ :		
A.1.668	—N, CH ₃	12), 13, und 146.
	N CH_3	N==#
A.1.669	$-N$ CH_3 CH_3	#
A.1.670	$-N$ CH_3 CH_3	#
A.1.671	-N_CH ₃	#
A.1.672	$-N$ CH_3 CH_3	#
A.1.673	$-N$ CH_3 CH_3	#
A.1.674	CH ₃	#
A.1.675	$-N$ CH_3 CH_3	#
A.1.676	CH ₃	#
A.1.677	CH ₃	#

TABLE A-continued

Meanings for R_1 , R_2 , R_5 and R_6 :			
A.1.678	$-N$ CH_3 CH_3	#	
A.1.679	$-N$ CH_3 CH_3	F #	
A.1.680	-N_CH ₃	F #	
A.1.681	$-N$ CH_3 CH_3	#	
A.1.682	CH ₃	N Cl	
A.1.683	$-N$ CH_3 CH_3	Cí	
A.1.684	CH ₃	#	
A.1.685	$-N$ CH_3 CH_3	#	
A.1.686	$-N$ CH_3 CH_3	CI—#	
A.1.687	$-N$ CH_3 CH_3	F—#	

TABLE A-continued

	Meanings for R ₁	, R ₂ , R ₅ and R ₆ :
A.1.688	N CH ₃	N=#
A.1.689	CH ₃ CH ₃ CH ₃	#
A.1.690	\sim N \sim CH ₃ \sim CH ₃	# F
A.1.691	$-N$ CH_3 CH_3	
A.1.692	$-N$ CH_3 CH_3	
A.1.693	CH ₃	#
A.1.694	CH ₃	F #
A.1.695	\sim N \sim CH ₃ \sim CH ₃	F #
A.1.696	$-N$ CH_3 CH_3	F #
A.1.697	CH ₃	F #
A.1.698	$-N$ CH_3 CH_3	#

	Meanings for R ₁ ,	R ₂ , R ₅ and R ₆ :
A.1.699	$-N$ CH_3 CH_3	
A.1.700	$-N$ CH_3 CH_3	
A.1.701	$-N$ CH_3 CH_3	#
A.1.702	\sim CH ₃	Cl #
A.1.703	\sim	CI #
A.1.704	$-N$ CH_3 CH_3	CI #
A.1.705	CH ₃	#
A.1.706	$-N$ CH_3 CH_3	Br #
A.1.707	\sim	#
A.1.708	CH ₃	#
A.1.709	\sim CH ₃ \sim CH ₃	#
A.1.710	\sim N CH ₃ CH ₃	HO #

Meanings for R_1 , R_2 , R_5 and R_6 :		
A.1.711	-N_CH ₃	# OH
A.1.712	$-N$ CH_3 CH_3	CI #
A.1.713	$-N$ CH_3 CH_3	CI #
A.1.714	\sim N \sim CH ₃ \sim CH ₃	CI #
A.1.715	$-N$ CH_3 CH_3	#
A.1.716	\sim N CH ₃ CH ₃	F #
A.1.717	$-N$ CH_3 CH_3	F #
A.1.718	$-N$ CH_3 CH_3	F #
A.1.719	CH ₃	# F
A.1.720	$-N$ CH_3 CH_3	#
A.1.721	$-N$ CH_3 CH_3	#

Meanings for R ₁ , R ₂ , R ₅ and R ₆ :		
A.1.722	CH ₃	#
A.1.723	$-N$ CH_3 CH_3	#
A.1.724	\sim N CH ₃ CH ₃	Br#
A.1.725	\sim N \sim CH ₃ \sim CH ₃	N #
A.1.726	$-N$ CH_3 CH_3	N #
A.1.727	CH ₃	Br #
A.1.728	\sim N CH ₃ \sim CH ₃	CI #
A.1.729	$-N$ CH_3 CH_3	#
A.1.730	\sim N \sim CH ₃ \sim CH ₃	#
A.1.731	\sim N CH ₃ CH ₃	#

TABLE A-continued

Meanings for R ₁ , R ₂ , R ₅ and R ₆ :		
A.1.732	CH ₃	#
A.1.733	CH ₃ CH ₃	#
A.1.734	$-N$ CH_3 CH_3	#
A.1.735	\sim N \sim CH ₃ \sim CH ₃	#
A.1.736	\sim N \sim CH ₃ \sim CH ₃	#
A.1.737	CH ₃	#
A.1.738	\sim N \sim CH ₃ \sim CH ₃	#
A.1.739	\sim	#
A.1.740	$-N$ CH_3 CH_3	#

TABLE A-continued

Meanings for R ₁ , R ₂ , R ₅ and R ₆ :		
A 1 741		R ₂ , R ₅ and R ₆ :
A.1.741	NCH ₃	#
A.1.742	$-N$ CH_3 CH_3	#
A.1.743	$-N$ CH_3 CH_3	#
A.1.744	N CH ₃	#
A.1.745	$-N$ CH_3 CH_3	#
A.1.746	$-N$ CH_3 CH_3	#
A.1.747	$-N$ CH_3 CH_3	#
A.1.748	$-N$ CH_3 CH_3	,o#
A.1.749	$-N$ CH_3 CH_3	#
A.1.750	$-N$ CH_3 CH_3	#
A.1.751	$-N$ CH_3 CH_3	, o — #
A.1.752	CH ₃	#

TABLE A-continued

Meanings for R ₁ , R ₂ , R ₅ and R ₆ :		
A.1.753	CH ₃	0——#
A.1.754	—N CH₃	, o — #
A.1.755	—N CH₃	N — #
A.1.756	N CH ₃ CCH ₃	#
A.1.757	$-N$ CH_3 CH_3	# // // // //
A.1.758	$-N$ CH_3 CH_3	N==#
A.1.759	$-N$ CH_3 CH_3	Cl #
A.1.760	\sim N CH ₃ CH ₃	F #
A.1.761	$-N$ CH_3 CH_3	C1——#
A.1.762	$-N$ CH_3 CH_3	F—#
A.1.763	$-N$ CH_3 CH_3	# F

TABLE A-continued

Meanings for R_1 , R_2 , R_5 and R_6 :		
A.1.764	\sim N \sim CH ₃ \sim CH ₃	# F
A.1.765	$-N$ CH_3 CH_3	#
A.1.766	$-N$ CH_3 CH_3	#
A.1.767	$-N$ CH_3 CH_3	#
A.1.768	$-N$ CH_3 CH_3	#
A.1.769	$-N$ CH_3 CH_3	#
A.1.770	$-N$ CH_3 CH_3	#
A.1.771	$-N$ CH_3 CH_3	#
A.1.772	$-N$ CH_3 CH_3	F #
A.1.773	$-N$ CH_3 CH_3	CI #
A.1.774	$-N$ CH_3 CH_3	0 #
A.1.775	$-N$ CH_3 CH_3	S #
A.1.776	$-N$ CH_3 CH_3	O=S #

TABLE A-continued

Meanings for R_1 , R_2 , R_5 and R_6 :		
A.1.777	$-N$ CH_3 CH_3	O S #
A.1.778	$-N$ CH_3 CH_3	HN #
A.1.779	$-N$ CH_3 CH_3	#
A.1.780	$-N$ CH_3 CH_3	#
A.1.781	$-N$ CH_3 CH_3	O#
A.1.782	$-N$ CH_3 CH_3	O = S - N
A.1.783	$-N$ CH_3 CH_3	O S N #
A.1.784	CH ₃ CH ₃	O=S-N-#
A.1.785	$-N$ CH_3 CH_3	N #
A.1.786	$-N$ CH_3 CH_3	$\bigvee_{N} N \longrightarrow \#$
A.1.787	$-N$ CH_3 CH_3	O==#
A.1.788	$-N$ CH_3 CH_3	#

TABLE A-continued

Meanings for R_1 , R_2 , R_5 and R_6 :		
A.1.789	$-N$ CH_3 CH_3	O==#
A.1.790	$-N$ CH_3 CH_3	O===#
A .1.791	$-N$ CH_3 CH_3	O===##
A.1.792	$-N$ CH_3 CH_3	но—#
A.1.793	$-N$ CH_3 CH_3	s===##################################
A.1.794	CH ₃	O_#
A.1.795	$-N$ CH_3 CH_3	O #
A.1.796	N CH ₃	S S
A.1.797	$-N$ CH_3 CH_3	S H
A.1.798	$-N$ CH_3 CH_3	
A.1.799	$-N$ CH_3 CH_3	O_N==#
A.1.800	$-N$ CH_3 CH_3	

TABLE A-continued

Meanings for R_1 , R_2 , R_5 and R_6 :		
A.1.801	CH ₃	O_N=#
A.1.802	$-N$ CH_3 CH_3	$N = \emptyset$
A.1.803	$-N$ CH_3 CH_3	
A.1.804	$-N$ CH_3 CH_3	N===##
A.1.805	$-N$ CH_3 CH_3	#
A.1.806	$-N$ CH_3 CH_3	CI—#
A.1.807	$-N$ CH_3 CH_3	F—#
A.1.808	$-N$ CH_3 CH_3	#
A.1.809	CH ₃	# C1
A.1.810	$-N$ CH_3 CH_3	# Cl
A.1.811	$-N$ CH_3 CH_3	#
A.1.812	$-N$ CH_3 CH_3	#

TABLE A-continued

Meanings for R ₁ , R ₂ , R ₅ and R ₆ :		
A.1.813	—N CH3	\
	N CH_3	#
A.1.814	$-N$ CH_3 CH_3	#
A.1.815	\sim N CH ₃ CH ₃	#
A.1.816	$-N$ CH_3 CH_3	#
A.1.817	$-N$ CH_3 CH_3	#
A.1.818	$-N$ CH_3 CH_3	#
A.1.819	$-N$ CH_3 CH_3	#
A.1.820	$-N$ CH_3 CH_3	#
A.1.821	$-N$ CH_3 CH_3	#
A.1.822	$-N$ CH_3 CH_3	#
A.1.823	-N_CH ₃	#

TABLE A-continued

Meanings for R ₁ , R ₂ , R ₅ and R ₆ :		
A.1.824	CH ₃	#
A.1.825	$-N$ CH_3 CH_3	#
A.1.826	$-N$ CH_3 CH_3	/ \ #
A.1.827	$-N$ CH_3 CH_3	#
A.1.828	$-N$ CH_3 CH_3	#
A.1.829	$-N$ CH_3 CH_3	#
A.1.830	$-N$ CH_3 CH_3	#
A.1.831	$-N$ CH_3 CH_3	#
A.1.832	$-N$ CH_3 CH_3	#
A.1.833	$-N$ CH_3 CH_3	#

TABLE A-continued

Meanings for R ₁ , R ₂ , R ₅ and R ₆ :		
A.1.834	$-N$ CH_3 CH_3	*
A.1.835	$-N$ CH_3 CH_3	#
A.1.836	$-N$ CH_3 CH_3	s #
A.1.837	N CH ₃	s #
A.1.838	$-N$ CH_3 CH_3	# S
A.1.839	N CH ₃	# S
A.1.840	$-N$ CH_3 CH_3	O #
A.1.841	N CH ₃ CH ₃	# O N
A.1.842	$-N$ CH_3 CH_3	O #
A.1.843	\sim N CH ₃ CH ₃	O #

Meanings for R ₁ , R ₂ , R ₅ and R ₆ :		
A.1.844	CH ₃ CH ₃	# O N
A.1.845	\sim N \sim CH ₃ \sim CH ₃	S N
A.1.846	$-N$ CH_3 CH_3	S N
A.1.847	CH ₃	S N
A.1.848	CH ₃ CH ₃	S #
A.1.849	$-N$ CH_3 CH_3	# N
A.1.850	$-N$ CH_3 CH_3	S #
A.1.851	$-N$ CH_3 CH_3	S N

TABLE A-continued

Meanings for R_1 , R_2 , R_5 and R_6 :		
A.1.852	CH ₃	S H
A.1.853	CH ₃	S #
A.1.854	CH ₃	s N
A.1.855	\sim N CH ₃ CH ₃	S CI
A.1.856	\sim	S CI
A.1.857	CH ₃	Br Br
A.1.858	CH ₃ CH ₃	# Br

TABLE A-continued

Meanings for R_1 , R_2 , R_5 and R_6 :		
A.1.859	CH ₃	# N
A.1.860	CH ₃	# S N
A.1.861	$-N$ CH_3 CH_3	# Cl
A.1.862	CH ₃ CH ₃	# CI
A.1.863	$-N$ CH_3 CH_3	# O
A.1.864	-N_CH ₃	# O
A.1.865	$-N$ CH_3 CH_3	# N == C1

Meanings for R_1 , R_2 , R_5 and R_6 :		
A.1.866	$-N$ CH_3 CH_3	# N==
A.1.867	CH ₃	# N====================================
A.1.868	CH ₃	# N = \(\)
A.1.869	$-N$ CH_3 CH_3	N#
A.1.870	CH ₃ CCH ₃	,N#
A.1.871	CH ₃	# N
A.1.872	CH ₃	# N

Meanings for R_1 , R_2 , R_5 and R_6 :		
A.1.873	CH ₃	#
A.1.874		#
A.1.875	CH_3 CH_3 CH_3	#
A.1.876	CH ₃	#
A.1.877	\sim N CH ₃ CH ₃ \sim CH ₃	#
A.1.878	CH ₃	#
A.1.879	CH_3 CH_3 CH_3	#
A.1.880	N CH ₃ CH ₃	F—#

TABLE A-continued

Meanings for R_1 , R_2 , R_5 and R_6 :		
A.1.881	N CH ₃ CH ₃	F—#
A.1.882	$-N$ CH_3 CH_3	F——#
A.1.883		# F
A.1.884	\sim N CH ₃ CH ₃ \sim CH ₃	F—#
A.1.885		F—#
A.1.886	\sim N CH ₃ \sim CH ₃ \sim CH ₃	F—#
A.1.887		F——#

TABLE A-continued

Meanings for R ₁ , R ₂ , R ₅ and R ₆ :		
A.1.888	CH_3 CH_3 CH_3	F——#
A.1.889	CH_3 CH_3 CH_3 CH_3	CI—#
A.1.890	$-N$ CH_3 CH_3	CI—#
A.1.891		CI — #
A.1.892	CH ₃	CI #
A.1.893	CH_3 CH_3 CH_3 CH_3	CI—#
A.1.894	CH ₃	CI—#

Meanings for R ₁ , R ₂ , R ₅ and R ₆ :		
A.1.895	CH ₃ CH ₃ CH ₃	CI—#
A.1.896	\sim N CH ₃ CH ₃ \sim CH ₃	#
A.1.897		#
A.1.898	CH ₃	#
A.1.899	CH ₃	#
A.1.900	CH_3 CH_3 CH_3	#
A.1.901	CH ₃	#

Meanings for R_1 , R_2 , R_5 and R_6 :		
A.1.902	CH_3 CH_3 CH_3 CH_3	#
A.1.903	$-N$ CH_3 CH_3 CH_3	#
A.1.904		#
A.1.905	$-N$ CH_3 CH_3	#
A.1.906	CH_3 CH_3 CH_3 CH_3	#
A.1.907		#
A.1.908	$-N$ CH_3 CH_3	#
A.1.909	$-N$ CH_3 CH_3	#
A.1.910		#

Meanings for R ₁ , R ₂ , R ₅ and R ₆ :		
A.1.911	\sim CH ₃ \sim CH ₃ \sim CH ₃	#
A.1.912	$-N$ CH_3 CH_3	#
A.1.913		#
A.1.914	\sim N CH ₃ CH ₃ \sim CH ₃	#
A.1.915	\sim N CH ₃ CH ₃ \sim CH ₃	#
A.1.916		#
A.1.917	CH_3 CH_3 CH_3	#
A.1.918		#
A.1.919	$-N$ CH_3 CH_3	#

Meanings for R ₁ , R ₂ , R ₅ and R ₆ :		
A.1.920	-N CH ₃ CH ₃	#
A.1.921	\sim N CH ₃ CH ₃ \sim CH ₃	#
A.1.922		#
A.1.923	CH ₃	#
A.1.924	CH_3 CH_3 CH_3	#
A.1.925		#
A.1.926	\sim N CH ₃ CH ₃ \sim CH ₃	#
A.1.927		#
A.1.928	CH ₃	#
A.1.929		#

TABLE A-continued

Meanings for R_1 , R_2 , R_5 and R_6 :		
A.1.930	\sim N CH ₃ CH ₃ \sim CH ₃	#
A.1.931	CH ₃	#
A.1.932		#
A.1.933	\sim N CH ₃ CH ₃ \sim CH ₃	#
A.1.934	\sim	#
A.1.935		#
A.1.936	$-N$ CH_3 CH_3	#
A.1.937		#
A.1.938	$-N$ CH_3 CH_3 CH_3	#
A.1.939	$-N$ CH_3 CH_3	
A .1.940		
A.1.941	CH_3 CH_3 CH_3	

TABLE A-continued

TABLE A-continued		
Meanings for R ₁ , R ₂ , R ₅ and R ₆ :		
A.1.942		#
A.1.943	\sim N CH ₃ CH ₃ \sim CH ₃	#
A.1.944	\sim	#
A.1.945	$-N$ CH_3 CH_3	#
A.1.946		#
A.1.947	\sim N CH ₃ CH ₃ \sim CH ₃	#
A.1.948	$-N$ CH_3 CH_3	#
A.1.949		········#
A.1.950	\sim N CH ₃ CH ₃ \sim CH ₃	·······#
A.1.951	\sim CH ₃ \sim CH ₃ \sim CH ₃	#
A.1.952		#
A.1.953	\sim N \sim CH ₃	#

TABLE A-continued

	Meanings for R_1 ,	R ₂ , R ₅ and R ₆ :
A.1.954	-N_CH ₃ CH ₃	#
A.1.955		······································
A.1.956	\sim N CH ₃ CH ₃ \sim CH ₃	O
A.1.957	$-N$ CH_3 CH_3	Omn
A.1.958		OHD
A.1.959	\sim CH ₃ \sim CH ₃ \sim CH ₃	Onn#
A.1.960	\sim CH ₃ \sim CH ₃ \sim CH ₃	O —#
A.1.961	$-N$ CH_3 CH_3	O #
A.1.962	\sim N CH ₃ CH ₃ \sim CH ₃	#
A.1.963	\sim N CH ₃ CH ₃	Опп#
A.1.964	\sim N CH ₃ CH ₃ \sim CH ₃	Onn#

TABLE A-continued

Meanings for R ₁ , R ₂ , R ₅ and R ₆ :		
A.1.965	CH ₃ CH ₃ CH ₃	#
A.1.966	\sim N CH ₃ CH ₃ \sim CH ₃	#
A.1.967	$-N$ CH_3 CH_3	#
A.1.968	\sim	#
A.1.969	$-N$ CH_3 CH_3	#
A.1.970	\sim N CH ₃ \sim CH ₃ \sim CH ₃	#
A.1.971	$-N$ CH_3 CH_3	
A.1.972	\sim N CH ₃ CH ₃ \sim CH ₃	······································
A.1.973	\sim N CH ₃ CH ₃ \sim CH ₃	, ₁₀₀ ,
A.1.974	\sim N CH ₃ CH ₃ \sim CH ₃	, ₁₀₀ ,
A.1.975		#

	Meanings for R ₁ , R ₂ , R ₅ and R ₆ :	
		C ₂ , K ₅ and K ₆ :
A.1.976	\sim N CH ₃ CH ₃ \sim CH ₃	#
A.1.977	\sim N CH ₃ CH ₃ \sim CH ₃	O #
A.1.978	-N	O #
A.1.979	\sim CH ₃	O #
A.1.980	\sim N CH ₃ CH ₃	O #
A.1.981		**************************************
A.1.982	\sim CH ₃ \sim CH ₃ \sim CH ₃	**************************************
A.1.983	$-N$ CH_3 CH_3	O
A.1.984		O
A.1.985	CH_3 CH_3 CH_3	O
A.1.986	\sim CH ₃ \sim CH ₃	#
A.1.987	$-N$ CH_3 CH_3	#

Meanings for R ₁ , R ₂ , R ₅ and R ₆ :		
A.1.989	\sim N CH ₃ CH ₃	······································
A.1.990	\sim N CH ₃ \sim CH ₃ \sim CH ₃	#
A.1.991	CH_3 CH_3 CH_3	S #
A.1.992	CH ₃ CH ₃	S #
A.1.993	\sim N CH ₃ \sim CH ₃ \sim CH ₃	S #
A.1.994	CH ₃	S N

TABLE A-continued

Meanings for R ₁ , R ₂ , R ₅ and R ₆ :		
A.1.995	CH_3 H_3C	S #
A.1.996	CH_3 CH_3 CH_3	0 N
A.1.997	CH_3 CH_3 H_3C	0 N
A.1.998	CH_3 H_3C	O #
A.1.999	$-N$ CH_3 CH_3	O #
A.1.1000	$-N$ CH_3 CH_3	# O N
A.1.1001	CH_3 CH_3 CH_3	# # N
A.1.1002	CH_3 CH_3 CH_3	S #

TABLE A-continued

Meanings for R_1 , R_2 , R_5 and R_6 :		
A.1.1003	CH ₃ CH ₃ CH ₃	S #
A.1.1004	\sim N CH ₃ CH ₃ \sim CH ₃	# S
A.1.1005	\sim N CH ₃ CH ₃ \sim CH ₃	# S
A.1.1006	CH ₃	# S
A.1.1007	\sim CH ₃ \sim CH ₃ \sim CH ₃	# S
A.1.1008	CH ₃	S S
A.1.1009	$-N$ CH_3 CH_3 CH_3	s The state of the
A.1.1010	CH ₃	s #
A.1.1011	\sim CH ₃ \sim CH ₃ \sim CH ₃	S #

TABLE A-continued

Meanings for R ₁ , R ₂ , R ₅ and R ₆ :		
A.1.1012	CH ₃	S #
A.1.1013	\sim N CH ₃ CH ₃ \sim CH ₃	S #
A.1.1014	\sim N CH ₃ CH ₃ \sim CH ₃	#
A.1.1015		#
A.1.1016	\sim N \sim CH ₃	#
A.1.1017	$-N$ CH_3 CH_3	#
A.1.1018	\sim N CH ₃ CH ₃ \sim CH ₃	#
A.1.1019	$-N$ CH_3 CH_3	#
A.1.1020	\sim N CH ₃ CH ₃ \sim CH ₃	······································
A.1.1021	\sim N CH ₃ CH ₃ \sim CH ₃	#
A.1.1022	$-N$ CH_3 CH_3	,O—#

TABLE A-continued

TABLE A-continued Meanings for R ₁ , R ₂ , R ₅ and R ₆ :		
A.1.1024	CH ₃	
A.1.1025	\sim N CH ₃ CH ₃ \sim CH ₃	O—————————————————————————————————————
A.1.1026	$-N$ CH_3 CH_3	H—#
A.1.1027	$-N$ CH_3 CH_3	H—#
A.1.1028	\sim N \sim CH ₃ \sim CH ₃	H—#
A.1.1029	\sim N CH ₃ CH ₃ \sim CH ₃	H—#
A.1.1030		Н—#
A.1.1031	N CH ₃	H—#
A.1.1032	\sim N \sim CH ₃	H—#
A.1.1033	CH_3 H_3C	H—#

TABLE A-continued

Meanings for R_1 , R_2 , R_5 and R_6 :		
A.1.1034	CH ₃	#
A.1.1035	CH ₃	F #
A.1.1036	$-N$ CH_3 CH_3	# # W
A.1.1037	CH ₃	# N
A.1.1038	CH ₃	F F F
A.1.1039	CH ₃	#
A.1.1040	$-N$ CH_3 CH_3	
A.1.1041	$-N$ CH_3 CH_3	,0
A.1.1042	$-N$ CH_3 CH_3	Br—#
A.1.1043	CH ₃	CI #

TABLE A-continued

Meanings for R_1 , R_2 , R_5 and R_6 :		
A.1.1044	$-N$ CH_3 CH_3	Br #
A.1.1045	$-N$ CH_3 CH_3	#
A.1.1046	CH ₃	#
A.1.1047	$-N$ CH_3 CH_3	#
A.1.1048	$-N$ CH_3 CH_3	#
A.1.1049	-N_CH ₃	F #
A.1.1050	\sim N $_{\rm CH_3}$ $_{\rm CH_3}$	F F
A.1.1051	$-N$ CH_3 CH_3	#
A.1.1052	$-N$ CH_3 CH_3	#
A.1.1053	$-N$ CH_3 CH_3	#
A.1.1054	$-N$ CH_3 CH_3	#

TABLE A-continued

TABLETA Continued		
	Meanings for R ₁ ,	R_2 , R_5 and R_6 :
A.1.1055	$-N$ CH_3	*
A.1.1056	CH ₃	#
A.1.1057	CH ₃	
A.1.1058	CH ₃	
A.1.1059	CH ₃	#
A .1.1060	CH ₃	
A.1.1061	$-N$ CH_3 CH_3	#
A.1.1062	CH ₃	F #
A.1.1063	CH ₃	F #
A.1.1064	CH ₃	F
A.1.1065		F F F
	\sim CH ₃	#
A.1.1066	$-N$ CH_3 CH_3	F #
A.1.1067	$-N$ CH_3 CH_3	F #

TABLE A-continued

Meanings for R ₁ , R ₂ , R ₅ and R ₆ :		
A.1.1068	CH ₃	F F #
A.1.1069	$-N$ CH_3 CH_3	F #
A.1.1070	$-N$ CH_3 CH_3	F F
A.1.1071	$-N$ CH_3 CH_3	F #
A.1.1072	$-N$ CH_3 CH_3	$\overbrace{\hspace{1cm}}^F \overbrace{\hspace{1cm}}^F_{\#}$
A.1.1073	$-N$ CH_3 CH_3	F F #
A.1.1074	$-N$ CH_3 CH_3	F #
A.1.1075	CH ₃	#
A.1.1076	$-N$ CH_3 CH_3	#
A.1.1077	CH ₃	F F F
A.1.1078	$-N$ CH_3 CH_3	F F
A.1.1079	$-N$ CH_3 CH_3	F #

TABLE A-continued

1ABLE A-continued		
Meanings for R ₁ , R ₂ , R ₅ and R ₆ :		
A.1.1080	CH ₃	F F $#$
A.1.1081	CH ₃	F F F
A.1.1082	\sim N CH ₃ CH ₃	#
A.1.1083	\sim N CH ₃ \sim CH ₃	#
A.1.1084	$-N$ CH_3 CH_3	#
A.1.1085	\sim N \sim CH ₃ \sim CH ₃	#
A.1.1086	\sim N CH ₃ CH ₃	#
A.1.1087	\sim N \sim CH ₃ \sim CH ₃	#
A.1.1088	$-N$ CH_3 CH_3	#
A.1.1089	$-N$ CH_3 CH_3	#
A.1.1090	$-N$ CH_3 CH_3	CI #
A.1.1091	\sim N \sim CH ₃ \sim CH ₃	CI #
A.1.1092	$-N$ CH_3 CH_3	#

TABLE A-continued

Meanings for R_1 , R_2 , R_5 and R_6 :		
	Meanings for K ₁ , i	X ₂ , K ₅ and K ₆ :
A.1.1093	N CH ₃	#
A.1.1094	CH ₃	F #
A.1.1095	CH ₃ CH ₃ CH ₃	F #
A.1.1096	CH ₃ CH ₃	F #
A.1.1097	$-N$ CH_3	CI #
A.1.1098	CH ₃ CH ₃ CH ₃	CI #
A.1.1099	CH ₃ CH ₃	F F F
A.1.1100	CH ₃	F #
A.1.1101	NCH ₃	Ė
A.1.1102	CH ₃ CH ₃	#
A.1.1103	$-N$ CH_3 CH_3	#
A.1.1104	-N_CH ₃	$F \xrightarrow{F} F$
A.1.1105	CH ₃	F F F

TABLE A-continued

Meanings for R ₁ , R ₂ , R ₅ and R ₆ :		
A.1.1106	—N CH3	A .
A.1.1107	CH ₃	#
A.1.1108	CH ₃	#
A.1.1109	CH ₃	#
A.1.1110	$-N$ CH_3 CH_3	$ \begin{array}{c} $
A.1.1111	N CH_3 CH_3	#
A.1.1112	N CH ₃	#
A.1.1113	N CH ₃	,m" #
A.1.1114	N CH ₃	<i>"</i> "#
A.1.1115	CH ₃	man,#
A.1.1116	$-N$ CH_3 CH_3	F F #
A.1.1117	$-N$ CH_3 CH_3	F F #
A.1.1118	N CH ₃ CH ₃	F F #

TABLE A-continued

Meanings for R ₁ , R ₂ , R ₅ and R ₆ :		
A.1.1119	N CH ₃	F F mm.
A.1.1120	$-N$ CH_3 CH_3	
A.1.1121	N CH ₃ CH ₃	F F #
A.1.1122	CH ₃	F F F F
A.1.1123	CH ₃	
A.1.1124	$-N$ CH_3 CH_3	***
A.1.1125	$-N$ CH_3 CH_3	
A.1.1126	$-N$ CH_3 CH_3	## ## ## ## ## ## ## ## ## ## ## ## ##
A.1.1127	-N_CH ₃	
A.1.1128	N CH ₃ CH ₃	#

TABLE A-continued

Meanings for R ₁ , R ₂ , R ₅ and R ₆ :		
A.1.1129	CH ₃	#
A.1.1130	$-N$ CH_3 CH_3	#
A.1.1131	\sim N CH ₃ CH ₃ CH ₃	0
A.1.1132	$-N$ CH_3 CH_3	F#
A.1.1133	-N_CH ₃ -CH ₃	F F F
A.1.1134	$-N$ CH_3 CH_3	—o
A.1.1135	$-N$ CH_3 CH_3	O
A.1.1136	N CH ₃ CH ₃	0 #
A.1.1137	CH ₃	0 #
A.1.1138	$-N$ CH_3 CH_3	#
A.1.1139	$-N$ CH_3 CH_3	#

TABLE A-continued

Meanings for R ₁ , R ₂ , R ₅ and R ₆ :		
A.1.1140	$-N$ CH_3 CH_3	#
A.1.1141	N CH ₃	#
A.1.1142	$-N$ CH_3 CH_3	#
A.1.1143	$-N$ CH_3 CH_3	
A.1.1144	$-N$ CH_3 CH_3	#
A.1.1145	$-N$ CH_3 CH_3	mu
A.1.1146	$-N$ CH_3 CH_3	#
A.1.1147	$-N$ CH_3 CH_3	#
A.1.1148	$-N$ CH_3 CH_3	#
A.1.1149	$-N$ CH_3 CH_3	#
A.1.1150	$-N$ CH_3 CH_3	······································

TABLE A-continued

Meanings for R ₁ , R ₂ , R ₅ and R ₆ :		
A.1.1151	-N_CH ₃	#
A.1.1152	$-N$ CH_3 CH_3	#
A.1.1153	\sim N \sim CH ₃ \sim CH ₃	#
A.1.1154	CH ₃	#
A.1.1155	CH ₃	F#
A.1.1156	CH ₃	F F $#$
A.1.1157	CH ₃	F F #
A.1.1158	\sim N \sim CH ₃ \sim CH ₃	F F #
A.1.1159	N CH ₃ CH ₃	O #
A.1.1160	$-N$ CH_3 CH_3	S H

TABLE A-continued

1ABLE A-continued		
	Meanings for R ₁ ,	R ₂ , R ₅ and R ₆ :
A.1.1161	CH ₃	S S
A.1.1162	$-N$ CH_3 CH_3	S H
A.1.1163	$-N$ CH_3 CH_3	0 #
A.1.1164	\sim N CH ₃ CH ₃	
A.1.1165	$-N$ CH_3 CH_3	0 #
A.1.1166	$-N$ CH_3 CH_3	#
A.1.1167	$-N$ CH_3 CH_3	
A.1.1168	CH ₃	$F \xrightarrow{F} \#$
A.1.1169	$-N$ CH_3 CH_3	0 #
A.1.1170	$-N$ CH_3 CH_3	0
A.1.1171	$-N$ CH_3 CH_3	F #
A.1.1172	$-N$ CH_3 CH_3	F #

TABLE A-continued

Meanings for R_1 , R_2 , R_5 and R_6 :		
A.1.1173	—N CH ₃ CCH ₃	CI #
A.1.1174	\sim N \sim CH ₃ \sim CH ₃	F #
A.1.1175	$-N$ CH_3 CH_3	#
A.1.1176	$-N$ CH_3 CH_3	# s
A.1.1177	—N CH ₃ CH ₃	
A.1.1178	$-N$ CH_3 CH_3	# #
A.1.1179	$-N$ CH_3 CH_3	-s
A.1.1180	CH ₃	
A.1.1181	$-N$ CH_3 CH_3	$ \begin{array}{c} F \\ F \end{array} $

TABLE A-continued

TABLE A-continued		
Meanings for R ₁ , R ₂ , R ₅ and R ₆ :		
A.1.1182	\sim N CH ₃ CH ₃	F F F F F F F F F F
A.1.1183	CH ₃	$\bigvee_{F}^{F} F$
A.1.1184	$-N$ CH_3 CH_3	F F F F
A.1.1185	\sim N \sim CH ₃ \sim CH ₃	F F F
A.1.1186	\sim N \sim CH ₃ \sim CH ₃	F #
A.1.1187	CH ₃	#
A.1.1188	CH ₃	O
A.1.1189	\sim	
A.1.1190	\sim N \sim CH ₃ \sim CH ₃	

TABLE A-continued

Meanings for R_1 , R_2 , R_5 and R_6 :		
A.1.1191	N CH ₃	
A.1.1192	$-N$ CH_3 CH_3	#
A.1.1193	$-N$ CH_3 CH_3	F #
A.1.1194	CH ₃	F F
A.1.1195	-N_CH ₃ CH ₃	CI
A.1.1196	\sim N \sim CH ₃ \sim CH ₃	CI
A.1.1197	$-N$ CH_3 CH_3	$ \begin{array}{c} \\ \\ \\ \\ \\ \end{array} $
A.1.1198	$-N$ CH_3 CH_3	F #
A.1.1199	$-N$ CH_3 CH_3	\bigvee_{F}

TABLE A-continued

Meanings for R ₁ , R ₂ , R ₅ and R ₆ :		
A.1.1200	$-N$ CH_3 CH_3	F#
A.1.1201	$-N$ CH_3 CH_3	F#

The following tables T1 to T151 disclose preferred compounds of formula I for inclusion as component A in compositions of the invention.

TABLE 1

This table discloses the 1201 compounds T1.1.1 to T1.1.1201 of the formula

in which, for each of these 1201 specific compounds, each of the variables R_1 , R_2 , R_5 and R_6 has the specific meaning given in the corresponding line, appropriately selected from the 1201 lines A.1.1 to A.1.1201 of Table A. For example, the specific compound T1.1.13 is the compound of the formula T1, in which each of the variables R_1 , R_2 , R_5 and R_6 has the specific meaning given in the line A.1.13 of Table A:

According to the same system, also all of the other 1201 50 specific compounds disclosed in the Table 1 as well as all of the specific compounds disclosed in the Tables 2 to T151 are specified analogously.

TABLE 2

This table discloses the 1201 compounds T2.1.1 to T2.1.1201 of the formula

$$R_5$$
 CH_3
 R_1
 CF_3
 R_6
 R_2 ,
 $CT2)$
 $CT2)$
 $CT3$
 $CT3$

in which, for each of these 1201 specific compounds, each of the variables R_1 , R_2 , R_5 and R_6 has the specific meaning given in the corresponding line, appropriately selected from the 1201 lines A.1.1 to A.1.1201 of Table A.

TABLE 3

This table discloses the 1201 compounds T3.1.1 to T3.1.1201 of the formula

$$\begin{array}{c} R_5 \\ O \\ \end{array} \begin{array}{c} N \\ \end{array} \begin{array}{c} CH_3 \\ N \\ \end{array} \begin{array}{c} R_1 \\ N \\ R_6 \end{array} \begin{array}{c} R_2, \end{array}$$

in which, for each of these 1201 specific compounds, each of the variables $R_1,\,R_2,\,R_5$ and R_6 has the specific meaning given in the corresponding line, appropriately selected from the 1201 lines A.1.1 to A.1.1201 of Table A.

TABLE 4

This table discloses the 1201 compounds T4.1.1 to T4.1.1201 of the formula

20

25

This table discloses the 1201 compounds

472 TABLE 8

This table discloses the 1201 compounds T8.1.1 to T8.1.1201 of the formula

$$\begin{array}{c}
R_5 \\
O \\
F
\end{array}$$

$$\begin{array}{c}
N \\
R_6 \\
R_2
\end{array}$$

$$\begin{array}{c}
R_1 \\
R_2
\end{array}$$

$$\begin{array}{c}
R_1 \\
R_2
\end{array}$$

in which, for each of these 1201 specific compounds, each of the variables R_1 , R_2 , R_5 and R_6 has the specific meaning given in the corresponding line, appropriately selected from the 1201 lines A.1.1 to A.1.1201 of Table A.

T5.1.1 to T5.1.1201 of the formula

$$\begin{array}{c} R_5 \\ O \\ \end{array} \begin{array}{c} N \\ \\ N \\ \\ R_6 \end{array} \begin{array}{c} R_1 \\ \\ R_2, \end{array}$$

in which, for each of these 1201 specific compounds, each of the variables R_1 , R_2 , R_5 and R_6 has the specific meaning given in the corresponding line, appropriately selected from the 1201 lines A.1.1 to A.1.1201 of Table A.

TABLE 6

This table discloses the 1201 compounds T6.1.1 to T6.1.1201 of the formula

$$\begin{array}{c} \text{CH}_3 \\ \text{N} \\ \text{N} \\ \text{N} \\ \text{R}_6 \end{array} \begin{array}{c} \text{R}_1 \\ \text{R}_2, \end{array}$$

in which, for each of these 1201 specific compounds, each of the variables R_1 , R_2 , R_5 and R_6 has the specific meaning given in the corresponding line, appropriately selected from the 1201 lines A.1.1 to A.1.1201 of Table A.

TABLE 7

This table discloses the 1201 compounds T7.1.1 to T7.1.1201 of the formula

$$R_5$$
 N
 R_6
 R_1
 R_2
 R_3
 R_4
 R_5
 R_6
 R_2
 R_3
 R_4
 R_5
 R_6
 R_6
 R_6
 R_8
 R_9
 R_9

in which, for each of these 1201 specific compounds, each of the variables R_1 , R_2 , R_5 and R_6 has the specific meaning 65 given in the corresponding line, appropriately selected from the 1201 lines A.1.1 to A.1.1201 of Table A.

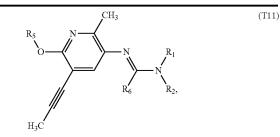
TABLE 9

This table discloses the 1201 compounds T9.1.1 to T9.1.1201 of the formula

$$R_5$$
 N
 N
 R_1
 R_6
 R_2 , R_2

in which, for each of these 1201 specific compounds, each of the variables R_1 , R_2 , R_5 and R_6 has the specific meaning given in the corresponding line, appropriately selected from the 1201 lines A.1.1 to A.1.1201 of Table A.

TABLE 10


This table discloses the 1201 compounds T10.1.1 to T10.1.1201 of the formula

$$R_5$$
 N
 R_6
 R_1
 R_6
 R_2 ,
 R_1

in which, for each of these 1201 specific compounds, each of the variables R_1 , R_2 , R_5 and R_6 has the specific meaning given in the corresponding line, appropriately selected from the 1201 lines A.1.1 to A.1.1201 of Table A.

TABLE 11

This table discloses the 1201 compounds T11.1.1 to T11.1.1201 of the formula

473

in which, for each of these 1201 specific compounds, each of the variables R_1 , R_2 , R_5 and R_6 has the specific meaning given in the corresponding line, appropriately selected from the 1201 lines A.1.1 to A.1.1201 of Table A.

TABLE 12

This table discloses the 1201 compounds T12.1.1 to T12.1.1201 of the formula

$$R_5$$
 N
 R_6
 R_1
 R_2
 N
 R_2

in which, for each of these 1201 specific compounds, each of the variables R_1 , R_2 , R_5 and R_6 has the specific meaning given in the corresponding line, appropriately selected from $_{25}$ the 1201 lines A.1.1 to A.1.1201 of Table A.

TABLE 13

This table discloses the 1201 compounds T13.1.1 to T13.1.1201 of the formula

$$\begin{array}{c} R_5 \\ O \\ \\ I \end{array} \begin{array}{c} N \\ \\ R_6 \end{array} \begin{array}{c} R_1 \\ \\ R_2, \end{array}$$

in which, for each of these 1201 specific compounds, each of the variables $R_1,\,R_2,\,R_5$ and R_6 has the specific meaning given in the corresponding line, appropriately selected from the 1201 lines A.1.1 to A.1.1201 of Table A.

TABLE 14

This table discloses the 1201 compounds T14.1.1 to T14.1.1201 of the formula

in which, for each of these 1201 specific compounds, each of the variables R_1 , R_2 , R_5 and R_6 has the specific meaning given in the corresponding line, appropriately selected from the 1201 lines A.1.1 to A.1.1201 of Table A.

474

TABLE 15

This table discloses the 1201 compounds T15.1.1 to T15.1.1201 of the formula

in which, for each of these 1201 specific compounds, each of the variables R_1 , R_2 , R_5 and R_6 has the specific meaning given in the corresponding line, appropriately selected from the 1201 lines A.1.1 to A.1.1201 of Table A.

TABLE 16

This table discloses the 1201 compounds T16.1.1 to T16.1.1201 of the formula

$$R_5$$
 N
 N
 R_1
 CF_3
 R_6
 R_2 ,
 R_2

in which, for each of these 1201 specific compounds, each of the variables R_1 , R_2 , R_5 and R_6 has the specific meaning given in the corresponding line, appropriately selected from the 1201 lines A.1.1 to A.1.1201 of Table A.

TABLE 17

This table discloses the 1201 compounds T17.1.1 to T17.1.1201 of the

$$R_5$$
 N N R_1 R_2 , R_2 , R_2

in which, for each of these 1201 specific compounds, each of the variables R_1 , R_2 , R_5 and R_6 has the specific meaning given in the corresponding line, appropriately selected from the 1201 lines A.1.1 to A.1.1201 of Table A.

TABLE 18

This table discloses the 1201 compounds T18.1.1 to T18.1.1201 of the

$$R_5$$
 N R_1 R_2 R_4 R_2 , R_4 R_5 R_2 , R_4 R_5 R_5 R_6 R_2 ,

in which, for each of these 1201 specific compounds, each of the variables $R_1,\,R_2,\,R_5$ and R_6 has the specific meaning

475

given in the corresponding line, appropriately selected from the 1201 lines A.1.1 to A.1.1201 of Table A.

TABLE 19

This table discloses the 1201 compounds T19.1.1 to T19.1.1201 of the formula

$$R_5$$
 N
 R_6
 R_1
 R_6
 R_2 ,
 R_1

in which, for each of these 1201 specific compounds, each of the variables R_1 , R_2 , R_5 and R_6 has the specific meaning given in the corresponding line, appropriately selected from the 1201 lines A.1.1 to A.1.1201 of Table A.

TABLE 20

This table discloses the 1201 compounds T20.1.1 to T20.1.1201 of the formula ${\bf r}$

in which, for each of these 1201 specific compounds, each of the variables $R_1,\,R_2,\,R_5$ and R_6 has the specific meaning given in the corresponding line, appropriately selected from the 1201 lines A.1.1 to A.1.1201 of Table A.

TABLE 21

This table discloses the 1201 compounds T21.1.1 to T21.1.1201 of the formula

in which, for each of these 1201 specific compounds, each of the variables R_1 , R_2 , R_5 and R_6 has the specific meaning given in the corresponding line, appropriately selected from the 1201 lines A.1.1 to A.1.1201 of Table A.

476

TABLE 22

This table discloses the 1201 compounds T22.1.1 to T22.1.1201 of the formula

$$\begin{array}{c} R_5 \\ O \\ \hline \\ Br \end{array} \begin{array}{c} CH_3 \\ \hline \\ Cl \\ R_6 \end{array} \begin{array}{c} R_1 \\ R_2, \end{array}$$

in which, for each of these 1201 specific compounds, each of the variables R_1 , R_2 , R_5 and R_6 has the specific meaning given in the corresponding line, appropriately selected from the 1201 lines A.1.1 to A.1.1201 of Table A.

TABLE 23

This table discloses the 1201 compounds T23.1.1 to T23.1.1201 of the formula

 $\begin{array}{c} R_5 \\ O \\ \\ \end{array} \begin{array}{c} N \\ \\ \end{array} \begin{array}{c} N \\ \\ \\ \end{array} \begin{array}{c} N \\ \\ \\ \end{array} \begin{array}{c} R_1 \\ \\ \\ R_2, \end{array}$

in which, for each of these 1201 specific compounds, each of the variables R_1 , R_2 , R_5 and R_6 has the specific meaning given in the corresponding line, appropriately selected from the 1201 lines A.1.1 to A.1.1201 of Table A.

TABLE 24

This table discloses the 1201 compounds T24.1.1 to T24.1.1201 of the formula

in which, for each of these 1201 specific compounds, each of the variables R_1 , R_2 , R_5 and R_6 has the specific meaning given in the corresponding line, appropriately selected from the 1201 lines A.1.1 to A.1.1201 of Table A.

TABLE 25

This table discloses the 1201 compounds T25.1.1 to T25.1.1201 of the formula

$$\begin{array}{c} R_5 \\ O \\ \hline \\ Cl \end{array} \begin{array}{c} N \\ \hline \\ Cl \end{array} \begin{array}{c} N \\ R_1 \\ \hline \\ R_2, \end{array}$$

TABLE 30

This table discloses the 1201 compounds T26.1.1 to T26.1.1201 of the formula

in which, for each of these 1201 specific compounds, each of the variables R_1 , R_2 , R_5 and R_6 has the specific meaning given in the corresponding line, appropriately selected from 15 the 1201 lines A.1.1 to A.1.1201 of Table A.

TABLE 27

This table discloses the 1201 compounds T27.1.1 to T27.1.1201 of the formula

$$\begin{array}{c} R_5 \\ O \\ \hline \\ N \\ \hline \\ N \\ \hline \\ N \\ R_1 \\ \hline \\ N \\ R_2, \end{array}$$

in which, for each of these 1201 specific compounds, each $_{30}$ of the variables R_1 , R_2 , R_5 and R_6 has the specific meaning given in the corresponding line, appropriately selected from the 1201 lines A.1.1 to A.1.1201 of Table A.

TABLE 28

This table discloses the 1201 compounds T28.1.1 to T28.1.1201 of the formula

$$\begin{array}{c} R_5 \\ O \\ \hline \\ CH_3 \\ R_6 \\ \end{array} \begin{array}{c} R_1 \\ R_2, \end{array}$$

in which, for each of these 1201 specific compounds, each of the variables $R_1,\,R_2,\,R_5$ and R_6 has the specific meaning given in the corresponding line, appropriately selected from the 1201 lines A.1.1 to A.1.1201 of Table A.

TABLE 29

This table discloses the 1201 compounds T29.1.1 to T29.1.1201 of the formula

in which, for each of these 1201 specific compounds, each of the variables R_1 , R_2 , R_5 and R_6 has the specific meaning 65 given in the corresponding line, appropriately selected from the 1201 lines A.1.1 to A.1.1201 of Table A.

This table discloses the 1201 compounds T30.1.1 to T30.1.1201 of the formula

$$\begin{array}{c} R_5 \\ N \\ O \\ \end{array} \begin{array}{c} N \\ N \\ \end{array} \begin{array}{c} N \\ N \\ R_6 \end{array} \begin{array}{c} R_1 \\ R_2, \end{array}$$

in which, for each of these 1201 specific compounds, each of the variables R_1 , R_2 , R_5 and R_6 has the specific meaning given in the corresponding line, appropriately selected from the 1201 lines A.1.1 to A.1.1201 of Table A.

TABLE 31

This table discloses the 1201 compounds T31.1.1 to T31.1.1201 of the formula

in which, for each of these 1201 specific compounds, each of the variables R_1 , R_2 , R_5 and R_6 has the specific meaning given in the corresponding line, appropriately selected from the 1201 lines A.1.1 to A.1.1201 of Table A.

TABLE 32

This table discloses the 1201 compounds T32.1.1 to T32.1.1201 of the formula

$$\begin{array}{c} R_5 \\ O \\ \hline \\ CF_3 \end{array} \qquad \begin{array}{c} N \\ R_6 \\ R_2, \end{array}$$

TABLE 33

480

TABLE 36

This table discloses the 1201 compounds T33.1.1 to T33.1.1201 of the formula

 $N(CH_3)_2$

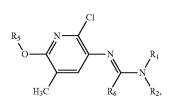
(T33)

This table discloses the 1201 compounds T36.1.1 to T36.1.1201 of the formula

(T36)

in which, for each of these 1201 specific compounds, each of the variables R₁, R₂, R₅ and R₆ has the specific meaning the 1201 lines A.1.1 to A.1.1201 of Table A.

in which, for each of these 1201 specific compounds, each of the variables R₁, R₂, R₅ and R₆ has the specific meaning given in the corresponding line, appropriately selected from 20 given in the corresponding line, appropriately selected from the 1201 lines A.1.1 to A.1.1201 of Table A.


TABLE 34

This table discloses the 1201 compounds T34.1.1 to T34.1.1201 of the formula

25

45

This table discloses the 1201 compounds T37.1.1 to T37.1.1201 of the formula

(T34)

in which, for each of these 1201 specific compounds, each of the variables R₁, R₂, R₅ and R₆ has the specific meaning given in the corresponding line, appropriately selected from the 1201 lines A.1.1 to A.1.1201 of Table A.

in which, for each of these 1201 specific compounds, each of the variables R₁, R₂, R₅ and R₆ has the specific meaning given in the corresponding line, appropriately selected from the 1201 lines A.1.1 to A.1.1201 of Table A.

TABLE 35

This table discloses the 1201 compounds T35.1.1 to T35.1.1201 of the formula

TABLE 38

This table discloses the 1201 compounds T38.1.1 to T38.1.1201 of the formula

(T35)

(T38)

(T37)

in which, for each of these 1201 specific compounds, each of the variables R_1 , R_2 , R_5 and R_6 has the specific meaning $_{65}$ given in the corresponding line, appropriately selected from the 1201 lines A.1.1 to A.1.1201 of Table A.

TABLE 39

482

TABLE 42

This table discloses the 1201 compounds T39.1.1 to T39.1.1201 of the formula

This table discloses the 1201 compounds T42.1.1 to T42.1.1201 of the formula

(T39)

(T40) 30

(T42)

in which, for each of these 1201 specific compounds, each of the variables R₁, R₂, R₅ and R₆ has the specific meaning given in the corresponding line, appropriately selected from 20 of the variables R1, R2, R5 and R6 has the specific meaning the 1201 lines A.1.1 to A.1.1201 of Table A.

TABLE 40

This table discloses the 1201 compounds T40.1.1 to T40.1.1201 of the formula

TABLE 43

the 1201 lines A.1.1 to A.1.1201 of Table A.

This table discloses the 1201 compounds T43.1.1 to T43.1.1201 of the formula

in which, for each of these 1201 specific compounds, each

given in the corresponding line, appropriately selected from

in which, for each of these 1201 specific compounds, each of the variables R₁, R₂, R₅ and R₆ has the specific meaning (T43)

in which, for each of these 1201 specific compounds, each of the variables R₁, R₂, R₅ and R₆ has the specific meaning 45 given in the corresponding line, appropriately selected from the 1201 lines A.1.1 to A.1.1201 of Table A.

TABLE 41

given in the corresponding line, appropriately selected from

the 1201 lines A.1.1 to A.1.1201 of Table A.

T41.1.1 to T41.1.1201 of the formula

This table discloses the 1201 compounds

(T41) $N(CH_3)_2$ 55 60 TABLE 44

This table discloses the 1201 compounds T44.1.1 to T44.1.1201 of the formula

(T44)

in which, for each of these 1201 specific compounds, each of the variables R_1 , R_2 , R_5 and R_6 has the specific meaning $_{65}$ given in the corresponding line, appropriately selected from the 1201 lines A.1.1 to A.1.1201 of Table A.

(T45)

10

35

50

483

TABLE 45

This table discloses the 1201 compounds

T45.1.1 to T45.1.1201 of the formula

484 TABLE 48

This table discloses the 1201 compounds T48.1.1 to T48.1.1201 of the formula

SO₂CH₃

$$\begin{array}{c}
R_5 \\
N
\end{array}$$
N
$$\begin{array}{c}
N \\
R_6
\end{array}$$
R₂,

in which, for each of these 1201 specific compounds, each of the variables $R_1,\,R_2,\,R_5$ and R_6 has the specific meaning given in the corresponding line, appropriately selected from the 1201 lines A.1.1 to A.1.1201 of Table A.

TABLE 46

This table discloses the 1201 compounds T46.1.1 to T46.1.1201 of the formula

in which, for each of these 1201 specific compounds, each of the variables R_1 , R_2 , R_5 and R_6 has the specific meaning given in the corresponding line, appropriately selected from 45 the 1201 lines A.1.1 to A.1.1201 of Table A.

TABLE 47
This table discloses the 1201 compounds

T47.1.1 to T47.1.1201 of the formula	
SCH ₃	(T47)
R_5 N N N R_1	5.
R_6 R_2	61

in which, for each of these 1201 specific compounds, each of the variables R_1 , R_2 , R_5 and R_6 has the specific meaning given in the corresponding line, appropriately selected from the 1201 lines A.1.1 to A.1.1201 of Table A.

in which, for each of these 1201 specific compounds, each of the variables R_1 , R_2 , R_5 and R_6 has the specific meaning given in the corresponding line, appropriately selected from the 1201 lines A.1.1 to A.1.1201 of Table A.

TABLE 49

This table discloses the 1201 compounds T49.1.1 to T49.1.1201 of the formula

$$\begin{array}{c} R_5 \\ O \\ N \\ N \\ N \end{array}$$

$$\begin{array}{c} N \\ N \\ R_6 \\ R_2, \end{array}$$

$$\begin{array}{c} R_1 \\ R_2, \\ N \\ N \end{array}$$

in which, for each of these 1201 specific compounds, each of the variables R_1 , R_2 , R_5 and R_6 has the specific meaning given in the corresponding line, appropriately selected from the 1201 lines A.1.1 to A.1.1201 of Table A.

TABLE 50

This table discloses the 1201 compounds T50.1.1 to T50.1.1201 of the formula

35

50

485

TABLE 51

486

TABLE 54

This table discloses the 1201 compounds T51.1.1 to T51.1.1201 of the formula

(T51)

This table discloses the 1201 compounds T54.1.1 to T54.1.1201 of the formula

in which, for each of these 1201 specific compounds, each of the variables R_1 , R_2 , R_5 and R_6 has the specific meaning $_{20}$ given in the corresponding line, appropriately selected from the 1201 lines A.1.1 to A.1.1201 of Table A.

TABLE 52

This table discloses the 1201 compounds T52.1.1 to T52.1.1201 of the formula

in which, for each of these 1201 specific compounds, each of the variables R_1 , R_2 , R_5 and R_6 has the specific meaning given in the corresponding line, appropriately selected from the 1201 lines A.1.1 to A.1.1201 of Table A.

TABLE 55

This table discloses the 1201 compounds T55.1.1 to T55.1.1201 of the formula

 $\begin{array}{c} \text{RS} \\ \text{N} \\ \text{O} \\ \text{CH}_2\text{CH}_3 \end{array} \qquad \begin{array}{c} \text{N} \\ \text{N} \\ \text{R}_6 \end{array} \qquad \begin{array}{c} \text{R}_1 \\ \text{R}_2, \end{array}$

in which, for each of these 1201 specific compounds, each of the variables R_1 , R_2 , R_5 and R_6 has the specific meaning given in the corresponding line, appropriately selected from the 1201 lines A.1.1 to A.1.1201 of Table A.

TABLE 53

This table discloses the 1201 compounds T53.1.1 to T53.1.1201 of the formula

$$R_5$$
 N N R_1 R_2 N R_2 R_3 R_4 R_5 R_6 R_2 R_6 R_2 R_5 R_6 R_6 R_6 R_8 R_9 R_9

in which, for each of these 1201 specific compounds, each of the variables $R_1,\,R_2,\,R_5$ and R_6 has the specific meaning given in the corresponding line, appropriately selected from the 1201 lines A.1.1 to A.1.1201 of Table A.

TABLE 56

This table discloses the 1201 compounds T56.1.1 to T56.1.1201 of the formula

in which, for each of these 1201 specific compounds, each of the variables R_1 , R_2 , R_5 and R_6 has the specific meaning given in the corresponding line, appropriately selected from the 1201 lines A.1.1 to A.1.1201 of Table A.

(T57)

10

25

45

50

487

TABLE 57

This table discloses the 1201 compounds

T57.1.1 to T57.1.1201 of the formula

 $N(CH_3)_2$

488 TABLE 60

This table discloses the 1201 compounds

T60.1.1 to T60.1.1201 of the formula

(T60)

in which, for each of these 1201 specific compounds, each of the variables R₁, R₂, R₅ and R₆ has the specific meaning given in the corresponding line, appropriately selected from the 1201 lines A.1.1 to A.1.1201 of Table A.

CH₂CH₃

TABLE 58

This table discloses the 1201 compounds

T58.1.1 to T58.1.1201 of the formula

(T58) 35

in which, for each of these 1201 specific compounds, each of the variables R₁, R₂, R₅ and R₆ has the specific meaning given in the corresponding line, appropriately selected from the 1201 lines A.1.1 to A.1.1201 of Table A.

TABLE 59

This table discloses the 1201 compounds T59.1.1 to T59.1.1201 of the formula

$$\begin{array}{c} \text{(T59)} \\ \text{R5} \\ \text{O} \\ \\ \text{N} \\ \text{N} \\ \text{R6} \\ \text{R2}, \end{array} \qquad \begin{array}{c} \text{(T59)} \\ \text{55} \\ \text{60} \\ \text{60} \end{array}$$

in which, for each of these 1201 specific compounds, each of the variables R₁, R₂, R₅ and R₆ has the specific meaning 65 given in the corresponding line, appropriately selected from the 1201 lines A.1.1 to A.1.1201 of Table A.

in which, for each of these 1201 specific compounds, each of the variables R₁, R₂, R₅ and R₆ has the specific meaning given in the corresponding line, appropriately selected from the 1201 lines A.1.1 to A.1.1201 of Table A.

TABLE 61

This table discloses the 1201 compounds T61.1.1 to T61.1.1201 of the formula

(T61)

in which, for each of these 1201 specific compounds, each of the variables R₁, R₂, R₅ and R₆ has the specific meaning given in the corresponding line, appropriately selected from the 1201 lines A.1.1 to A.1.1201 of Table A.

TABLE 62

This table discloses the 1201 compounds T62.1.1 to T62.1.1201 of the formula

TABLE 63

490

TABLE 66

This table discloses the 1201 compounds

T66.1.1 to T66.1.1201 of the formula

This table discloses the 1201 compounds T63.1.1 to T63.1.1201 of the formula

(T63)

$$R_5$$
 N
 N
 R_6
 N
 R_1
 R_2

in which, for each of these 1201 specific compounds, each of the variables $R_1,\,R_2,\,R_5$ and R_6 has the specific meaning $_{20}$ given in the corresponding line, appropriately selected from

the 1201 lines A.1.1 to A.1.1201 of Table A.

of the variables R₁, R₂, R₅ and R₆ has the specific meaning given in the corresponding line, appropriately selected from the 1201 lines A.1.1 to A.1.1201 of Table A.

in which, for each of these 1201 specific compounds, each

TABLE 64

This table discloses the 1201 compounds T64.1.1 to T64.1.1201 of the formula

TABLE 67

This table discloses the 1201 compounds T67.1.1 to T67.1.1201 of the formula

in which, for each of these 1201 specific compounds, each

of the variables R₁, R₂, R₅ and R₆ has the specific meaning

given in the corresponding line, appropriately selected from

TABLE 68

(T67)

in which, for each of these 1201 specific compounds, each 40 of the variables R₁, R₂, R₅ and R₆ has the specific meaning given in the corresponding line, appropriately selected from the 1201 lines A.1.1 to A.1.1201 of Table A.

TABLE 65

This table discloses the 1201 compounds T65.1.1 to T65.1.1201 of the formula

45

(T65)

the 1201 lines A.1.1 to A.1.1201 of Table A.

55 60

(T68)

in which, for each of these 1201 specific compounds, each of the variables R_1 , R_2 , R_5 and R_6 has the specific meaning $_{65}$ given in the corresponding line, appropriately selected from the 1201 lines A.1.1 to A.1.1201 of Table A.

25

35

55

(T69)

491

TABLE 69

This table discloses the 1201 compounds

T69.1.1 to T69.1.1201 of the formula

CH₂CH₃

492 TABLE 73

This table discloses the 1201 compounds T73.1.1 to T73.1.1201 of the formula

in which, for each of these 1201 specific compounds, each of the variables R_1 , R_2 , R_5 and R_6 has the specific meaning given in the corresponding line, appropriately selected from

the 1201 lines A.1.1 to A.1.1201 of Table A.

TABLE 70

the 1201 lines A.1.1 to A.1.1201 of Table A.

in which, for each of these 1201 specific compounds, each of the variables $\rm R_1, \, R_2, \, R_5$ and $\rm R_6$ has the specific meaning $_{15}$ given in the corresponding line, appropriately selected from

This table discloses the 1201 compounds T70.1.1 to T70.1.1201 of the formula

$$\begin{array}{c} \text{SOCH}_3 \\ \text{N} \\ \text{N} \\ \text{N} \\ \text{N} \\ \text{R}_6 \\ \text{R}_2, \end{array}$$

in which, for each of these 1201 specific compounds, each of the variables R_1 , R_2 , R_5 and R_6 has the specific meaning given in the corresponding line, appropriately selected from the 1201 lines A.1.1 to A.1.1201 of Table A.

TABLE 71

This table discloses the 1201 compounds T71.1.1 to T71.1.1201 of the formula

in which, for each of these 1201 specific compounds, each of the variables $R_1,\,R_2,\,R_5$ and R_6 has the specific meaning given in the corresponding line, appropriately selected from $_{50}$ the 1201 lines A.1.1 to A.1.1201 of Table A.

TABLE 72

This table discloses the 1201 compounds T72.1.1 to T72.1.1201 of the formula

$$R_5$$
 N
 N
 R_6
 R_2
 R_2
 R_3
 R_4
 R_5
 R_5
 R_5
 R_7

in which, for each of these 1201 specific compounds, each of the variables $\rm R_1, R_2, R_5$ and $\rm R_6$ has the specific meaning given in the corresponding line, appropriately selected from the 1201 lines A.1.1 to A.1.1201 of Table A.

TABLE 74

This table discloses the 1201 compounds T74.1.1 to T74.1.1201 of the formula

$$\begin{array}{c} & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & &$$

in which, for each of these 1201 specific compounds, each of the variables R_1 , R_2 , R_5 and R_6 has the specific meaning given in the corresponding line, appropriately selected from $_{45}$ the 1201 lines A.1.1 to A.1.1201 of Table A.

TABLE 75

This table discloses the 1201 compounds T75.1.1 to T75.1.1201 of the formula

$$\begin{array}{c} R_5 \\ N \\ N \\ N \\ N \\ N \\ R_6 \end{array}$$

$$\begin{array}{c} R_1 \\ R_2, \end{array}$$

TABLE 76

This table discloses the 1201 compounds T76.1.1 to T76.1.1201 of the formula

$$R_5$$
 N
 N
 R_1
 R_6
 R_2 ,
 R_2

in which, for each of these 1201 specific compounds, each of the variables R_1 , R_2 , R_5 and R_6 has the specific meaning given in the corresponding line, appropriately selected from the 1201 lines A.1.1 to A.1.1201 of Table A.

TABLE 77

This table discloses the 1201 compounds T77.1.1 to T77.1.1201 of the formula

$$\begin{array}{c} R_5 \\ O \\ CI \\ R_6 \\ R_2, \end{array} \qquad (T77)$$

in which, for each of these 1201 specific compounds, each of the variables R_1 , R_2 , R_5 and R_6 has the specific meaning given in the corresponding line, appropriately selected from the 1201 lines A.1.1 to A.1.1201 of Table A.

TABLE 78

This table discloses the 1201 compounds T78.1.1 to T78.1.1201 of the formula

$$\begin{array}{c} R_{5} \\ O \\ \hline \\ H_{3}C \end{array} \begin{array}{c} F \\ \\ R_{6} \\ \\ R_{2}, \end{array} (T78)$$

in which, for each of these 1201 specific compounds, each of the variables R_1 , R_2 , R_5 and R_6 has the specific meaning 50 given in the corresponding line, appropriately selected from the 1201 lines A.1.1 to A.1.1201 of Table A.

TABLE 79

This table discloses the 1201 compounds T79.1.1 to T79.1.1201 of the formula

60

in which, for each of these 1201 specific compounds, each of the variables R_1 , R_2 , R_5 and R_6 has the specific meaning

494

given in the corresponding line, appropriately selected from the 1201 lines A.1.1 to A.1.1201 of Table A.

TABLE 80

This table discloses the 1201 compounds T80.1.1 to T80.1.1201 of the formula

$$R_5$$
 N N R_1 N R_2 , R_2 ,

in which, for each of these 1201 specific compounds, each of the variables R_1 , R_2 , R_5 and R_6 has the specific meaning given in the corresponding line, appropriately selected from the 1201 lines A.1.1 to A.1.1201 of Table A.

TABLE 81

This table discloses the 1201 compounds T81.1.1 to T81.1.1201 of the formula

in which, for each of these 1201 specific compounds, each of the variables R_1 , R_2 , R_5 and R_6 has the specific meaning given in the corresponding line, appropriately selected from the 1201 lines A.1.1 to A.1.1201 of Table A.

TABLE 82

This table discloses the 1201 compounds T82.1.1 to T82.1.1201 of the formula

$$\begin{array}{c} R_{5} \\ O \\ \\ C_{1} \end{array} \begin{array}{c} C_{1} \\ \\ R_{6} \end{array} \begin{array}{c} R_{1} \\ \\ R_{2}, \end{array}$$

55

This table discloses the 1201 compounds T83.1.1 to T83.1.1201 of the formula

in which, for each of these 1201 specific compounds, each of the variables R_1 , R_2 , R_5 and R_6 has the specific meaning given in the corresponding line, appropriately selected from the 1201 lines A.1.1 to A.1.1201 of Table A.

TABLE 84

This table discloses the 1201 compounds T84.1.1 to T84.1.1201 of the formula

$$R_5$$
 N
 N
 R_1
 R_6
 R_2 ,
 R_1
 R_2

in which, for each of these 1201 specific compounds, each of the variables R_1 , R_2 , R_5 and R_6 has the specific meaning given in the corresponding line, appropriately selected from 35 the 1201 lines A.1.1 to A.1.1201 of Table A.

TABLE 85

This table discloses the 1201 compounds T85.1.1 to T85.1.1201 of the formula

$$R_5$$
 O
 N
 R_6
 R_7
 R_1
 R_6
 R_7
 R_7
 R_7

in which, for each of these 1201 specific compounds, each of the variables $R_1,\,R_2,\,R_5$ and R_6 has the specific meaning given in the corresponding line, appropriately selected from the 1201 lines A.1.1 to A.1.1201 of Table A.

TABLE 86

This table discloses the 1201 compounds T86.1.1 to T86.1.1201 of the formula

496

in which, for each of these 1201 specific compounds, each of the variables $R_1,\,R_2,\,R_5$ and R_6 has the specific meaning given in the corresponding line, appropriately selected from the 1201 lines A.1.1 to A.1.1201 of Table A.

TABLE 87

This table discloses the 1201 compounds T87.1.1 to T87.1.1201 of the formula

$$R_5$$
 N
 N
 R_6
 N
 R_1
 R_6
 R_2

in which, for each of these 1201 specific compounds, each of the variables $R_1,\,R_2,\,R_5$ and R_6 has the specific meaning given in the corresponding line, appropriately selected from the 1201 lines A.1.1 to A.1.1201 of Table A.

TABLE 88

This table discloses the 1201 compounds T88.1.1 to T88.1.1201 of the formula

in which, for each of these 1201 specific compounds, each of the variables R₁, R₂, R₅ and R₆ has the specific meaning given in the corresponding line, appropriately selected from the 1201 lines A.1.1 to A.1.1201 of Table A.

TABLE 89

This table discloses the 1201 compounds T89.1.1 to T89.1.1201 of the formula

$$R_5$$
 N
 N
 R_1
 R_6
 R_2 ,
 R_2

497

TABLE 90

498

TABLE 93

This table discloses the 1201 compounds T90.1.1 to T90.1.1201 of the formula

$$\begin{array}{c|c} & & & & & \\ R_5 & & & & & \\ \hline \\ O & & & & \\ \end{array}$$

in which, for each of these 1201 specific compounds, each of the variables R_1 , R_2 , R_5 and R_6 has the specific meaning $_{20}$ given in the corresponding line, appropriately selected from

the 1201 lines A.1.1 to A.1.1201 of Table A.

TABLE 91

This table discloses the 1201 compounds T91.1.1 to T91.1.1201 of the formula

$$R_5$$
 NH_2
 R_5
 N
 R_6
 R_1
 R_1
 R_1
 R_2

in which, for each of these 1201 specific compounds, each of the variables R₁, R₂, R₅ and R₆ has the specific meaning given in the corresponding line, appropriately selected from the 1201 lines A.1.1 to A.1.1201 of Table A.

TABLE 92

$$R_5$$
 N
 R_6
 R_6
 R_2
 R_7
 R_8
 R_8
 R_9
 R_9

in which, for each of these 1201 specific compounds, each of the variables R_1 , R_2 , R_5 and R_6 has the specific meaning $_{65}$ given in the corresponding line, appropriately selected from the 1201 lines A.1.1 to A.1.1201 of Table A.

This table discloses the 1201 compounds T93.1.1 to T93.1.1201 of the formula

in which, for each of these 1201 specific compounds, each of the variables R₁, R₂, R₅ and R₆ has the specific meaning given in the corresponding line, appropriately selected from the 1201 lines A.1.1 to A.1.1201 of Table A.

TABLE 94

This table discloses the 1201 compounds T94.1.1 to T94.1.1201 of the formula

(T94)

in which, for each of these 1201 specific compounds, each of the variables R₁, R₂, R₅ and R₆ has the specific meaning given in the corresponding line, appropriately selected from the 1201 lines A.1.1 to A.1.1201 of Table A.

TABLE 95

This table discloses the 1201 compounds T95.1.1 to T95.1.1201 of the formula

$$\begin{array}{c} R_{5} \\ N \\ N \\ R_{6} \\ R_{2}, \end{array}$$

45

500

TABLE 99

This table discloses the 1201 compounds T99.1.1 to T99.1.1201 of the formula

$$\begin{array}{c} \text{N} \\ \text{N} \\ \text{N} \\ \text{N} \\ \text{N} \\ \text{N} \end{array}$$

in which, for each of these 1201 specific compounds, each 15 of the variables R_1 , R_2 , R_5 and R_6 has the specific meaning given in the corresponding line, appropriately selected from the 1201 lines A.1.1 to A.1.1201 of Table A.

TABLE 100

This table discloses the 1201 compounds T100.1.1 to T100.1.1201 of the formula

in which, for each of these 1201 specific compounds, each of the variables R_1 , R_2 , R_5 and R_6 has the specific meaning given in the corresponding line, appropriately selected from 35 the 1201 lines A.1.1 to A.1.1201 of Table A.

TABLE 101

This table discloses the 1201 compounds T101.1.1 to T101.1.1201 of the formula

$$\begin{array}{c} R_5 \\ O \\ CI \end{array} \begin{array}{c} NH_2 \\ R_6 \\ R_2, \end{array}$$

in which, for each of these 1201 specific compounds, each of the variables $\rm R_1$, $\rm R_2$, $\rm R_5$ and $\rm R_6$ has the specific meaning given in the corresponding line, appropriately selected from the 1201 lines A.1.1 to A.1.1201 of Table A.

TABLE 102

This table discloses the 1201compounds T102.1.1 to T102.1.1201 of the formula

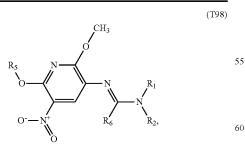
$$\begin{array}{c} R_5 \\ N \\ N \\ N \\ N \\ N \\ R_6 \end{array}$$

This table discloses the 1201 compounds T96.1.1 to T96.1.1201 of the formula

$$R_5$$
 N
 R_6
 R_6
 R_2 ,
 R_7
 R_8
 R_9
 R_9

in which, for each of these 1201 specific compounds, each of the variables R_1 , R_2 , R_5 and R_6 has the specific meaning given in the corresponding line, appropriately selected from the 1201 lines A.1.1 to A.1.1201 of Table A.

TABLE 97


This table discloses the 1201 compounds T97.1.1 to T97.1.1201 of the formula

 R_5 N N R_1 R_2 R_3

in which, for each of these 1201 specific compounds, each of the variables R_1 , R_2 , R_5 and R_6 has the specific meaning given in the corresponding line, appropriately selected from the 1201 lines A.1.1 to A.1.1201 of Table A.

TABLE 98

This table discloses the 1201compounds T98.1.1 to T98.1.1201 of the formula

15

35

501

in which, for each of these 1201 specific compounds, each of the variables R₁, R₂, R₅ and R₆ has the specific meaning given in the corresponding line, appropriately selected from the 1201 lines A.1.1 to A.1.1201 of Table A.

TABLE 103

This table discloses the 1201 compounds T103.1.1 to T103.1.1201 of the formula

in which, for each of these 1201 specific compounds, each of the variables R₁, R₂, R₅ and R₆ has the specific meaning given in the corresponding line, appropriately selected from the 1201 lines A.1.1 to A.1.1201 of Table A.

TABLE 104

This table discloses the 1201 compounds T104.1.1 to T104.1.1201 of the formula

in which, for each of these 1201 specific compounds, each of the variables R₁, R₂, R₅ and R₆ has the specific meaning 45 given in the corresponding line, appropriately selected from the 1201 lines A.1.1 to A.1.1201 of Table A.

TABLE 105

This table discloses the 1201 compounds T105.1.1 to T105.1.1201 of the formula

$$R_5$$
 CH_3
 R_6
 R_2
 CH_2CH_3
 CH_3
 CH_3
 R_4
 R_6
 R_2
 R_6
 R_6
 R_8

in which, for each of these 1201 specific compounds, each of the variables R₁, R₂, R₅ and R₆ has the specific meaning 65 given in the corresponding line, appropriately selected from the 1201 lines A.1.1 to A.1.1201 of Table A.

502

TABLE 106

This table discloses the 1201 compounds T106.1.1 to T106.1.1201 of the formula

(T106)

$$R_5$$
 O
 N
 R_1
 N
 R_6
 R_2

in which, for each of these 1201 specific compounds, each 20 of the variables R₁, R₂, R₅ and R₆ has the specific meaning given in the corresponding line, appropriately selected from the 1201 lines A.1.1 to A.1.1201 of Table A.

TABLE 107

This table discloses the 1201 compounds T107.1.1 to T107.1.1201 of the formula

(T107)

in which, for each of these 1201 specific compounds, each of the variables R₁, R₂, R₅ and R₆ has the specific meaning given in the corresponding line, appropriately selected from the 1201 lines A.1.1 to A.1.1201 of Table A.

TABLE 108

This table discloses the 1201 compounds T108.1.1 to T108.1.1201 of the formula

(T108)

$$\begin{array}{c} R_5 \\ O \\ \end{array} \begin{array}{c} N \\ \end{array} \begin{array}{c} CH_3 \\ N \\ \end{array} \begin{array}{c} R_1 \\ R_2, \end{array}$$

25

35

(T109)

503

This table discloses the 1201 compounds

T109.1.1 to T109.1.1201 of the formula

TABLE 109

504 TABLE 112

This table discloses the 1201 compounds T112.1.1 to T112.1.1201 of the formula

$$\begin{array}{c} R_5 \\ O \\ \end{array} \begin{array}{c} N \\ \end{array} \begin{array}{c} CH_3 \\ N \\ \end{array} \begin{array}{c} R_1 \\ R_2, \end{array}$$

in which, for each of these 1201 specific compounds, each of the variables R_1 , R_2 , R_5 and R_6 has the specific meaning given in the corresponding line, appropriately selected from the 1201 lines A.1.1 to A.1.1201 of Table A.

TABLE 110

the 1201 lines A.1.1 to A.1.1201 of Table A.

in which, for each of these 1201 specific compounds, each of the variables R_1 , R_2 , R_5 and R_6 has the specific meaning

given in the corresponding line, appropriately selected from $_{20}$

This table discloses the 1201 compounds T110.1.1 to T110.1.1201 of the formula

in which, for each of these 1201 specific compounds, each of the variables $R_1,\,R_2,\,R_5$ and R_6 has the specific meaning given in the corresponding line, appropriately selected from the 1201 lines A.1.1 to A.1.1201 of Table A.

TABLE 111

This table discloses the 1201 compounds T111.1.1 to T111.1.1201 of the formula

in which, for each of these 1201 specific compounds, each of the variables R_1 , R_2 , R_5 and R_6 has the specific meaning given in the corresponding line, appropriately selected from the 1201 lines A.1.1 to A.1.1201 of Table A.

TABLE 113

This table discloses the 1201 compounds T113.1.1 to T113.1.1201 of the formula

in which, for each of these 1201 specific compounds, each of the variables R_1 , R_2 , R_5 and R_6 has the specific meaning given in the corresponding line, appropriately selected from the 1201 lines A.1.1 to A.1.1201 of Table A.

TABLE 114

This table discloses the 1201 compounds T114.1.1 to T114.1.1201 of the formula

$$\begin{array}{c} R_{5} \\ O \\ \end{array} \begin{array}{c} CH_{3} \\ \end{array} \begin{array}{c} R_{1} \\ R_{2}, \end{array}$$

in which, for each of these 1201 specific compounds, each of the variables R_1 , R_2 , R_5 and R_6 has the specific meaning given in the corresponding line, appropriately selected from the 1201 lines A.1.1 to A.1.1201 of Table A.

(T115)

This table discloses the 1201 compounds

T115.1.1 to T115.1.1201 of the formula

506 **TABLE 118**

This table discloses the 1201 compounds T118.1.1 to T118.1.1201 of the formula

$$\begin{array}{c} R_{5} \\ O \\ \hline \\ N \\ \hline \\ N \\ R_{6} \\ \end{array} \begin{array}{c} R_{1} \\ R_{2}, \end{array}$$

in which, for each of these 1201 specific compounds, each 15 of the variables R₁, R₂, R₅ and R₆ has the specific meaning given in the corresponding line, appropriately selected from the 1201 lines A.1.1 to A.1.1201 of Table A.

in which, for each of these 1201 specific compounds, each of the variables R₁, R₂, R₅ and R₆ has the specific meaning given in the corresponding line, appropriately selected from

TABLE 116

the 1201 lines A.1.1 to A.1.1201 of Table A.

This table discloses the 1201 compounds T116.1.1 to T116.1.1201 of the formula

25

60

in which, for each of these 1201 specific compounds, each of the variables R₁, R₂, R₅ and R₆ has the specific meaning given in the corresponding line, appropriately selected from the 1201 lines A.1.1 to A.1.1201 of Table A.

TABLE 117

This table discloses the 1201 compounds T117.1.1 to T117.1.1201 of the formula

$$R_5$$
 N
 N
 R_6
 R_2 ,
 R_1
 R_2

in which, for each of these 1201 specific compounds, each of the variables R_1 , R_2 , R_5 and R_6 has the specific meaning given in the corresponding line, appropriately selected from the 1201 lines A.1.1 to A.1.1201 of Table A.

TABLE 119

This table discloses the 1201 compounds T119.1.1 to T119.1.1201 of the formula

(T119)

$$R_5$$
 N
 N
 R_1
 R_6
 R_2

in which, for each of these 1201 specific compounds, each of the variables R₁, R₂, R₅ and R₆ has the specific meaning given in the corresponding line, appropriately selected from 35 the 1201 lines A.1.1 to A.1.1201 of Table A.

TABLE 120

This table discloses the 1201 compounds T120.1.1 to T120.1.1201 of the formula

(T120)

in which, for each of these 1201 specific compounds, each of the variables R₁, R₂, R₅ and R₆ has the specific meaning given in the corresponding line, appropriately selected from the 1201 lines A.1.1 to A.1.1201 of Table A.

TABLE 121

This table discloses the 1201 compounds T121.1.1 to T121.1.1201 of the formula

$$\begin{array}{c} R_5 \\ O \\ \hline \\ HF_2C \\ \end{array} \begin{array}{c} N \\ \hline \\ R_6 \\ R_2, \end{array}$$

15

25

35

40

507

in which, for each of these 1201 specific compounds, each of the variables R_1 , R_2 , R_5 and R_6 has the specific meaning given in the corresponding line, appropriately selected from the 1201 lines A.1.1 to A.1.1201 of Table A.

TABLE 122

This table discloses the 1201 compounds T122.1.1 to T122.1.1201 of the formula

$$\begin{array}{c} R_5 \\ N \\ N \\ N \\ R_6 \end{array}$$

$$\begin{array}{c} N \\ R_1 \\ R_2, \end{array}$$

$$\begin{array}{c} R_1 \\ R_2, \end{array}$$

in which, for each of these 1201 specific compounds, each of the variables R_1 , R_2 , R_5 and R_6 has the specific meaning given in the corresponding line, appropriately selected from the 1201 lines A.1.1 to A.1.1201 of Table A.

TABLE 123

This table discloses the 1201 compounds T123.1.1 to T123.1.1201 of the formula

$$R_5$$
 N
 R_6
 R_1
 R_6
 R_2

in which, for each of these 1201 specific compounds, each of the variables R_1 , R_2 , R_5 and R_6 has the specific meaning given in the corresponding line, appropriately selected from the 1201 lines A.1.1 to A.1.1201 of Table A.

TABLE 124

This table discloses the 1201 compounds T124.1.1 to T124.1.1201 of the formula

in which, for each of these 1201 specific compounds, each of the variables R_1 , R_2 , R_5 and R_6 has the specific meaning 65 given in the corresponding line, appropriately selected from the 1201 lines A.1.1 to A.1.1201 of Table A.

508

TABLE 125

This table discloses the 1201 compounds T125.1.1 to T125.1.1201 of the formula

(T125)

in which, for each of these 1201 specific compounds, each of the variables R_1 , R_2 , R_5 and R_6 has the specific meaning given in the corresponding line, appropriately selected from the 1201 lines A.1.1 to A.1.1201 of Table A.

TABLE 126

This table discloses the 1201 compounds T126.1.1 to T126.1.1201 of the formula

(T126)

$$R_5$$
 N
 R_1
 R_3
 R_6
 R_2

in which, for each of these 1201 specific compounds, each of the variables R_1 , R_2 , R_5 and R_6 has the specific meaning given in the corresponding line, appropriately selected from the 1201 lines A.1.1 to A.1.1201 of Table A.

TABLE 127

This table discloses the 1201 compounds T127.1.1 to T127.1.1201 of the formula

(T127)

$$\begin{array}{c} R_{5} \\ O \\ \\ M_{3}C \\ \end{array}$$

$$\begin{array}{c} N \\ \\ R_{6} \\ \end{array}$$

$$\begin{array}{c} R_{1} \\ \\ R_{2}, \\ \end{array}$$

in which, for each of these 1201 specific compounds, each of the variables R_1 , R_2 , R_5 and R_6 has the specific meaning given in the corresponding line, appropriately selected from the 1201 lines A.1.1 to A.1.1201 of Table A.

(T128)

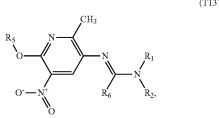
509

TABLE 128

510

TABLE 131

This table discloses the 1201 compounds T128.1.1 to T128.1.1201 of the formula


This table discloses the 1201 compounds T131.1.1 to T131.1.1201 of the formula

(T131)

(T132)

$$R_5$$
 N
 R_6
 R_2
 R_6
 R_2

in which, for each of these 1201 specific compounds, each of the variables R₁, R₂, R₅ and R₆ has the specific meaning given in the corresponding line, appropriately selected from $\ ^{20}$

in which, for each of these 1201 specific compounds, each of the variables R₁, R₂, R₅ and R₆ has the specific meaning given in the corresponding line, appropriately selected from the 1201 lines A.1.1 to A.1.1201 of Table A.

TABLE 129

the 1201 lines A.1.1 to A.1.1201 of Table A.

This table discloses the 1201 compounds T129.1.1 to T129.1.1201 of the formula

TABLE 132

This table discloses the 1201 compounds T132.1.1 to T132.1.1201 of the formula

(T129) ₃₀

50

60

(T130)

in which, for each of these 1201 specific compounds, each of the variables R₁, R₂, R₅ and R₆ has the specific meaning given in the corresponding line, appropriately selected from the 1201 lines A.1.1 to A.1.1201 of Table A.

in which, for each of these 1201 specific compounds, each of the variables R₁, R₂, R₅ and R₆ has the specific meaning given in the corresponding line, appropriately selected from the 1201 lines A.1.1 to A.1.1201 of Table A.

TABLE 130

This table discloses the 1201 compounds T130.1.1 to T130.1.1201 of the formula

TABLE 133

This table discloses the 1201 compounds T133.1.1 to T133.1.1201 of the formula

55

(T133)H₂C

in which, for each of these 1201 specific compounds, each of the variables R_1 , R_2 , R_5 and R_6 has the specific meaning $_{65}$ given in the corresponding line, appropriately selected from the 1201 lines A.1.1 to A.1.1201 of Table A.

in which, for each of these 1201 specific compounds, each of the variables R₁, R₂, R₅ and R₆ has the specific meaning given in the corresponding line, appropriately selected from the 1201 lines A.1.1 to A.1.1201 of Table A.

(T135)

511 TABLE 134

512

TABLE 137

This table discloses the 1201 compounds T134.1.1 to T134.1.1201 of the formula

_____5

This table discloses the 1201 compounds T137.1.1 to T137.1.1201 of the formula

 R_5 N R_6 R_2 N R_6 R_2 R_3 R_4 R_5 R_6 R_2

 $\begin{array}{c} R_{5} \\ O \\ \\ N \\ \\ N \\ \\ R_{6} \end{array}$ $\begin{array}{c} CH_{3} \\ \\ R_{1} \\ \\ R_{2}, \end{array}$ $\begin{array}{c} R_{1} \\ \\ R_{2}, \end{array}$

in which, for each of these 1201 specific compounds, each of the variables $R_1,\,R_2,\,R_5$ and R_6 has the specific meaning given in the corresponding line, appropriately selected from the 1201 lines A.1.1 to A.1.1201 of Table A.

in which, for each of these 1201 specific compounds, each of the variables $\rm R_1$, $\rm R_2$, $\rm R_5$ and $\rm R_6$ has the specific meaning given in the corresponding line, appropriately selected from the 1201 lines A.1.1 to A.1.1201 of Table A.

TABLE 135

This table discloses the 1201 compounds T135.1.1 to T135.1.1201 of the formula

TABLE 138

This table discloses the 1201 compounds T138.1.1 to T138.1.1201 of the formula

(T138)

 R_5 N R_1 R_2 R_3 R_4 R_5 R_6 R_2

in which, for each of these 1201 specific compounds, each of the variables R_1 , R_2 , R_5 and R_6 has the specific meaning given in the corresponding line, appropriately selected from the 1201 lines A.1.1 to A.1.1201 of Table A.

in which, for each of these 1201 specific compounds, each of the variables R_1 , R_2 , R_5 and R_6 has the specific meaning given in the corresponding line, appropriately selected from the 1201 lines A.1.1 to A.1.1201 of Table A.

TABLE 136

This table discloses the 1201 compounds T136.1.1 to T136.1.1201 of the formula

TABLE 139

This table discloses the 1201 compounds T139.1.1 to T139.1.1201 of the formula

(T136) $R_{5} \longrightarrow N \longrightarrow R_{1} \longrightarrow R_{2},$ $R_{3} \longrightarrow N \longrightarrow R_{2},$ $R_{5} \longrightarrow N \longrightarrow R_{1} \longrightarrow R_{2},$ $R_{6} \longrightarrow R_{2},$ $R_{6} \longrightarrow R_{2},$ $R_{6} \longrightarrow R_{2},$ $R_{6} \longrightarrow R_{2},$

 $\begin{array}{c} R_{5} \\ O \\ \end{array} \begin{array}{c} N \\ \end{array} \begin{array}{c} CI \\ N \\ \end{array} \begin{array}{c} R_{1} \\ R_{2}, \end{array}$

in which, for each of these 1201 specific compounds, each of the variables R_1 , R_2 , R_5 and R_6 has the specific meaning $_{65}$ given in the corresponding line, appropriately selected from the 1201 lines A.1.1 to A.1.1201 of Table A.

in which, for each of these 1201 specific compounds, each of the variables R_1 , R_2 , R_5 and R_6 has the specific meaning given in the corresponding line, appropriately selected from the 1201 lines A.1.1 to A.1.1201 of Table A.

This table discloses the 1201 compounds T140.1.1 to T140.1.1201 of the formula

in which, for each of these 1201 specific compounds, each of the variables R₁, R₂, R₅ and R₆ has the specific meaning given in the corresponding line, appropriately selected from 15 the 1201 lines A.1.1 to A.1.1201 of Table A.

TABLE 141

This table discloses the 1201 compounds T141.1.1 to T141.1.1201 of the formula

$$R_5$$
 N
 R_6
 R_1
 R_3
 R_4
 R_5
 R_6
 R_2

in which, for each of these 1201 specific compounds, each of the variables R₁, R₂, R₅ and R₆ has the specific meaning given in the corresponding line, appropriately selected from the 1201 lines A.1.1 to A.1.1201 of Table A.

TABLE 142

This table discloses the 1201 compounds T142.1.1 to T142.1.1201 of the formula

in which, for each of these 1201 specific compounds, each $_{50}$ of the variables R₁, R₂, R₅ and R₆ has the specific meaning given in the corresponding line, appropriately selected from the 1201 lines A.1.1 to A.1.1201 of Table A.

TABLE 143

This table discloses the 1201 compounds T143.1.1 to T143.1.1201 of the formula

514

in which, for each of these 1201 specific compounds, each of the variables R₁, R₂, R₅ and R₆ has the specific meaning given in the corresponding line, appropriately selected from the 1201 lines A.1.1 to A.1.1201 of Table A.

TABLE 144

This table discloses the 1201 compounds T144.1.1 to T144.1.1201 of the formula

(T144)

$$R_5$$
 O
 N
 N
 R_1
 R_2

in which, for each of these 1201 specific compounds, each of the variables R₁, R₂, R₅ and R₆ has the specific meaning 25 given in the corresponding line, appropriately selected from the 1201 lines A.1.1 to A.1.1201 of Table A.

TABLE 145

This table discloses the 1201 compounds T145.1.1 to T145.1.1201 of the formula

$$R_5$$
 N
 R_1
 H_3
 R_6
 R_2

in which, for each of these 1201 specific compounds, each of the variables R₁, R₂, R₅ and R₆ has the specific meaning 45 given in the corresponding line, appropriately selected from the 1201 lines A.1.1 to A.1.1201 of Table A.

TABLE 146

This table discloses the 1201 compounds T146.1.1 to T146.1.1201 of the formula

$$R_5$$
 N
 R_1
 R_6
 R_2 ,
 R_3

in which, for each of these 1201 specific compounds, each of the variables R₁, R₂, R₅ and R₆ has the specific meaning given in the corresponding line, appropriately selected from the 1201 lines A.1.1 to A.1.1201 of Table A.

(T147)

515

This table discloses the 1201 compounds

T147.1.1 to T147.1.1201 of the formula

TABLE 147

516 **TABLE 150**

This table discloses the 1201 compounds

$$\begin{array}{c} R_5 \\ N \\ N \\ N \\ R_6 \end{array}$$

given in the corresponding line, appropriately selected from $\ _{20}$ in which, for each of these 1201 specific compounds, each of the variables R_1 , R_2 , R_5 and R_6 has the specific meaning given in the corresponding line, appropriately selected from

the 1201 lines A.1.1 to A.1.1201 of Table A.

TABLE 148

the 1201 lines A.1.1 to A.1.1201 of Table A.

in which, for each of these 1201 specific compounds, each of the variables R₁, R₂, R₅ and R₆ has the specific meaning

> This table discloses the 1201 compounds T148.1.1 to T148.1.1201 of the formula

(T148) 35

in which, for each of these 1201 specific compounds, each of the variables $R_1,\,R_2,\,R_5$ and R_6 has the specific meaning 40 given in the corresponding line, appropriately selected from the 1201 lines A.1.1 to A.1.1201 of Table A.

TABLE 149

This table discloses the 1201 compounds T149.1.1 to T149.1.1201 of the formula

in which, for each of these 1201 specific compounds, each of the variables $R_1,\,R_2,\,R_5$ and R_6 has the specific meaning $_{65}$ given in the corresponding line, appropriately selected from the 1201 lines A.1.1 to A.1.1201 of Table A.

TABLE 151

This table discloses the 1201 compounds T151.1.1 to T151.1.1201 of the formula

$$\begin{array}{c} R_5 \\ N \\ N \\ R_6 \end{array}$$

$$\begin{array}{c} R_1 \\ R_2, \end{array}$$

in which, for each of these 1201 specific compounds, each of the variables R₁, R₂, R₅ and R₆ has the specific meaning given in the corresponding line, appropriately selected from the 1201 lines A.1.1 to A.1.1201 of Table A.

TABLE 152

This table discloses the 1201 compounds T152.1.1 to T152.1.1201 of the formula

$$\begin{array}{c|c}
R_5 & N & \\
N & N & R_1 \\
R_6 & R_2
\end{array}$$

in which, for each of these 1201 specific compounds, each of the variables R_1 , R_2 , R_5 and R_6 has the specific meaning given in the corresponding line, appropriately selected from the 1201 lines A.1.1 to A.1.1201 of Table A.

TABLE 153

518

TABLE 156

This table discloses the 1201 compounds T153.1.1 to T153.1.1201 of the formula

(T153)

This table discloses the 1201 compounds T156.1.1 to T156.1.1201 of the formula

(T156)

(T158)

in which, for each of these 1201 specific compounds, each of the variables R₁, R₂, R₅ and R₆ has the specific meaning given in the corresponding line, appropriately selected from 20 of the variables R1, R2, R5 and R6 has the specific meaning the 1201 lines A.1.1 to A.1.1201 of Table A.

TABLE 154

This table discloses the 1201 compounds T154.1.1 to T154.1.1201 of the formula

in which, for each of these 1201 specific compounds, each given in the corresponding line, appropriately selected from the 1201 lines A.1.1 to A.1.1201 of Table A.

TABLE 157

This table discloses the 1201 compounds T157.1.1 to T157.1.1201 of the formula

in which, for each of these 1201 specific compounds, each of the variables R₁, R₂, R₅ and R₆ has the specific meaning given in the corresponding line, appropriately selected from 45 (T157)

in which, for each of these 1201 specific compounds, each of the variables R_1 , R_2 , R_5 and R_6 has the specific meaning given in the corresponding line, appropriately selected from the 1201 lines A.1.1 to A.1.1201 of Table A.

TABLE 155

the 1201 lines A.1.1 to A.1.1201 of Table A.

This table discloses the 1201 compounds T155.1.1 to T155.1.1201 of the formula

50

TABLE 158

This table discloses the 1201 compounds T158.1.1 to T158.1.1201 of the formula

55 60

(T155)

in which, for each of these 1201 specific compounds, each of the variables R_1 , R_2 , R_5 and R_6 has the specific meaning 65 given in the corresponding line, appropriately selected from the 1201 lines A.1.1 to A.1.1201 of Table A.

in which, for each of these 1201 specific compounds, each of the variables R₁, R₂, R₅ and R₆ has the specific meaning given in the corresponding line, appropriately selected from the 1201 lines A.1.1 to A.1.1201 of Table A.

(T159)

This table discloses the 1201 compounds T159.1.1 to T159.1.1201 of the formula

520 TABLE 162

This table discloses the 1201 compounds T162.1.1 to T162.1.1201 of the formula

in which, for each of these 1201 specific compounds, each of the variables $R_1,\,R_2,\,R_5$ and R_6 has the specific meaning given in the corresponding line, appropriately selected from the 1201 lines A.1.1 to A.1.1201 of Table A.

R_6 R_2

in which, for each of these 1201 specific compounds, each of the variables R_1 , R_2 , R_5 and R_6 has the specific meaning 20 given in the corresponding line, appropriately selected from the 1201 lines A.1.1 to A.1.1201 of Table A.

TABLE 160

This table discloses the 1201 compounds T160.1.1 to T160.1.1201 of the formula

(T160)

25

45

60

in which, for each of these 1201 specific compounds, each $_{40}$ of the variables R_1 , R_2 , R_5 and R_6 has the specific meaning given in the corresponding line, appropriately selected from the 1201 lines A.1.1 to A.1.1201 of Table A.

TABLE 161

This table discloses the 1201 compounds T161.1.1 to T161.1.1201 of the formula

$$\begin{array}{c} R_5 \\ O \\ \hline \\ O \\ \hline \\ O \\ \hline \\ \\ R_6 \\ \hline \\ \\ R_2 \\ \end{array}$$
 (T161)

in which, for each of these 1201 specific compounds, each of the variables R_1 , R_2 , R_5 and R_6 has the specific meaning $_{65}$ given in the corresponding line, appropriately selected from the 1201 lines A.1.1 to A.1.1201 of Table A.

TABLE 163

This table discloses the 1201 compounds T163.1.1 to T163.1.1201 of the formula

(T163)

$$\begin{array}{c|c}
R_5 & N & \\
N & N & R_1 \\
R_6 & R_2
\end{array}$$

in which, for each of these 1201 specific compounds, each of the variables R_1 , R_2 , R_5 and R_6 has the specific meaning given in the corresponding line, appropriately selected from the 1201 lines A.1.1 to A.1.1201 of Table A.

TABLE 164

This table discloses the 1201 compounds T164.1.1 to T164.1.1201 of the formula

 $\begin{array}{c}
R_5 \\
O \\
Br
\end{array}$ $\begin{array}{c}
N \\
R_6
\end{array}$ $\begin{array}{c}
R_1 \\
R_2
\end{array}$ $\begin{array}{c}
(T164) \\
R_2
\end{array}$

in which, for each of these 1201 specific compounds, each of the variables $\rm R_1$, $\rm R_2$, $\rm R_5$ and $\rm R_6$ has the specific meaning given in the corresponding line, appropriately selected from the 1201 lines A.1.1 to A.1.1201 of Table A.

In further embodiments the invention provides novel intermediates to provide compounds according to formula (I) are compounds of formula (IV)

wherein R_{100} is wherein R_{100} is halogen, SH, C_1 - C_4 -alkylthio, C_1 - C_4 -alkylsulfinyl, C_1 - C_4 -alkylsulfonyl and R_1 , R_2 , R_3 , R_4 , R_6 and R_7 are as described herein for compounds of formula (I).

15

20 R.11

25

30

R.12

R.10

The Following Table Provides a Selection of Compounds of Formula (IV) $\,$

-continued

-continued

-continued

-continued

-continued

R.33 R.41 5 ¹⁰ R.42 R.34 15 R.35 R.43 20 R.36 25 R.44 30 R.45 R.37 35 40 R.46 R.38 45 50 R.47 R.39 55 R.48 R.40 60 65

-continued

-continued

The active compounds of component B are known e.g. from the Pesticide Manual (British Crop Protection Council). N-[9-(dichloromethylene)-1,2,3,4-tetrahydro-1,4-methanonaphthalen-5-yl]-3-(difluoromethyl)-1-methyl-1H-pyrazole-4-carboxamide has the Chemical Abstracts Registry Number [1072957-71-1]. The compound of formula (II) has the Chemical Abstracts Registry Number [173662-97-0]. The compounds (S)-[3-(4-Chloro-2-fluoro-phenyl)-5-(2,4-difluoro-phenyl)isoxazol-4-yl]pyridin-3-yl-methanol, 3-(4-Chloro-2-fluoro-phenyl)isoxazol-4-yl]pyridin-3-yl-methanol are found in WO2010069881.

The active ingredient mixture of the compounds of formula I selected from tables T1 to T164 or a specific compound 50 selected from P.1 to P.372 with active ingredients described above comprises a compound selected from tables T1 to T164 and an active ingredient as described above preferably in a mixing ratio of from 100:1 to 1:6000, especially from 50:1 to 1:500, more especially in a ratio of from 20:1 to 1:200, even 55 more especially from 10:1 to 1:100, very especially from 5:1 and 1:50, special preference being given to a ratio of from 3:1 to 1:10, and a ratio of from 3:1 to 1:5 being likewise preferred, above all in a ratio of 1:1, or 5:1, or 5:2, or 5:3, or 5:4, or 4:1, or 4:2, or 4:3, or 3:1, or 3:2, or 2:1, or 1:5, or 2:5, or 3:5, or 4:5, 60 or 1:4, or 2:4, or 3:4, or 1:3, or 2:3, or 1:2, or 1:600, or 1:300, or 1:150, or 1:35, or 2:35, or 4:35, or 1:75, or 2:75, or 4:75, or 1:6000, or 1:3000, or 1:1500, or 1:350, or 2:350, or 4:350, or 1:750, or 2:750, or 4:750. Those mixing ratios are understood to include, on the one hand, ratios by weight and also, on other 65 hand, molar ratios.

The mixtures comprising a compound of formula I e.g. selected from tables T1 to T164 or a specific compound

selected from P.1 to P.372 and one or more active ingredients as described above can be applied, for example, in a single "ready-mix" form, in a combined spray mixture composed from separate formulations of the single active ingredient components, such as a "tank-mix", and in a combined use of the single active ingredients when applied in a sequential manner, i.e. one after the other with a reasonably short period, such as a few hours or days. The order of applying the compounds of formula I e.g. those selected from tables T1 to T164 and the active ingredients as described above is not essential for working the present invention.

A synergistic effect exists whenever the action of an active ingredient combination is greater than the sum of the actions of the individual components.

The action to be expected E for a given active ingredient combination obeys the so-called COLBY formula and can be calculated as follows (COLBY, S. R. "Calculating synergistic and antagonistic responses of herbicide combination". Weeds, Vol. 15, pages 20-22; 1967):

ppm=milligrams of active ingredient (=a.i.) per liter of ²⁰ spray mixture

X=% action by active ingredient A) using p ppm of active ingredient

Y=% action by active ingredient B) using q ppm of active ingredient. According to COLBY, the expected (additive) action of active ingredients A)+B) using p+q ppm of active ingredient is

$$E = X + Y - \frac{X \cdot Y}{100}$$

If the action actually observed (O) is greater than the expected action (E), then the action of the combination is super-additive, i.e. there is a synergistic effect. In mathematical terms the synergism factor SF corresponds to O/E. In the agricultural practice an SF of ≥ 1.2 indicates significant improvement over the purely complementary addition of activities (expected activity), while an SF of ≤ 0.9 in the practical application routine signals a loss of activity compared to the expected activity.

EXAMPLES

Preparation of 1-(3,5-difluorophenyl)ethanol

$$F$$
 OH
 F

To a colorless stirred solution of $^{3'},^{5'}$ -diffluoroacetophenone (50.00 g, 320.24 mmol) in methanol (320 mL), sodium borohydride (3.41 g, 86.47 mmol), 0.27 eq) was added portion wise 60 over 20 minutes at room temperature under inert atmosphere (Ar). Then the reaction mixture was stirred for 45 min at room temperature and then quenched carefully by the addition of a saturated aqueous ammonium chloride solution (150 mL). The extraction was carried out with ethyl acetate (2×200 mL). 65 The combined organic layers were washed with brine (200 mL), dried over anhydrous Na₂SO₄ and filtered. The solvent

was removed in vacuo to give the title compound (50.29 g, 99%) as a colorless oil. The alcohol was used as such in the subsequent step.

TLC: Plates: Merck TLC-Plates, silica gel F_{254} , saturated atmosphere in developing tank, UV detection, eluent: heptanes/ethyl acetate 4:1 (v/v); R_r of the title compound=0.27.

Preparation of (-)-(S)-1-(3,5-difluorophenyl)ethanol

To a stirred solution of (-)-DIP-C1 ((-)-diisopinocampheylboron chloride) (2.67 g, 8.33 mmol, 1.3 eq) in THF (20 mL) kept under inert atmosphere (Ar) and cooled to -27° C. to -25° C., 3',5'-difluoroacetophenone (1.00 g, 6.40 mmol) was added drop wise over 2 min. The reaction was maintained at this temperature for 17 h. The reaction mixture was then treated with acetaldehyde (0.44 mL, 7.69 mmol, 1.2 eq). Thereafter, the temperature was allowed to reach room temperature and the reaction mixture was stirred at for 7 h. The solvent was then removed in vacuo and the resulting residue was partitioned between water (10 mL) and TBME (tertbutyl-methyl ether) (20 mL). The aqueous phase was extracted again with TBME (20 mL). The organic layer was washed with an aqueous 2 N NaOH solution (20 mL), brine (20 mL), dried over anhydrous Na₂SO₄ and filtered. The solvent was removed in vacuo to give a residue, which was purified by two subsequent column chromatographic steps: First by normal phase chromatography (silica gel, heptane/ ethyl acetate, v/v=1/0-9/1) followed by a reversed phase chromatography (90 C₁₈-silica gel, acetonitrile for the second one). This gave the title compound (0.40 g, 40%) as a colorless oil with a specific rotation of $[\alpha]^{25}_{D}$ =-26.66 (c=1.054 g/100 mL, CH₂Cl₂, 589 nm).

Preparation of cis and trans 4-isopropylcyclohexanol

To a stirred solution of 4-isopropylcyclohexanone (10.00 g, 68.46 mmol) in tert-butyl methyl ether (136 mL) cooled to 7° C. (cooling bath with a cyclohexane/liquid nitrogen slurry), a 1.00 M solution of lithium aluminium hydride in THF (23 mL, 22.59 mmol, 0.33 eq) was added drop wise over 35 minutes while keeping the temperature in the range of 7 to 10° C. Stirring was continued under these conditions. The reaction mixture was then allowed to reach room temperature and stirred at this temperature for an additional 40 minutes. It

25

was then carefully quenched by the slow addition of water (20 mL), followed by a one molar aqueous sulfuric acid solution (60 mL). The extraction was carried out with tert-butyl methyl ether (2×50 mL). The organic layer was washed with a saturated aqueous $\rm Na_2CO_3$ solution (80 mL), brine (80 mL), dried over anhydrous $\rm Na_2SO_4$ and filtered. The solvent was removed in vacuo to give a residue, which was purified by column chromatography (silica gel, heptane/ethyl acetate, v/v=1/0–9/1). Fractions containing the pure compounds were collected and concentrated in vacuo to give pure trans (6.91 g, 71%) and the pure cis isomer (0.68 g, 5%) of 4-isopropyl-cyclohexanol both as colourless oils.

TLC: Plates: Merck TLC-Plates, silica gel F_{254} , saturated atmosphere in developing tank, detection by spraying with Mo—Ce reagent, eluent: heptanes/ethyl acetate 4:1 (v/v); R_f of cis 4-isopropylcyclohexanol=0.20); R_f of trans 4-isopropylcyclohexanol=0.15.

Preparation of 3-bromo-2-(cis-4-isopropylcyclohex-oxy)-6-methyl-5-nitro-pyridine

$$+ HO \longrightarrow N^+ O$$

$$N \longrightarrow O$$

To a stirred suspension of 3-bromo-6-methyl-5-nitro-pyridin-2-ol (23.65 g, 101.5 mmol) in THF (180 mL), trans isopropylcyclohexanol (14.44 g, 101.5 mmol, 1.0 eq) and triphenylphosphine (32.27 g, 121.8 mmol, 1.2 eq) were added at room temperature under inert atmosphere (Ar). To this mixture, DIAD (diisopropyl diazodicarboxylate) (25.51 mL, 121.8 mmol, 1.2 eq) was added drop wise over 45 min while keeping the temperature below 45° C. Then, the reaction mixture was stirred for 5 h under heating to reflux. TLC indicated that the starting material was consumed. The reaction mixture was therefore allowed to reach room temperature and it was quenched by the addition of water (250 mL). The extraction was carried out with ethyl acetate (3×200 mL). The organic layer was washed with brine (300 mL), dried over anhydrous Na₂SO₄ and filtered. The solvent was removed in vacuo to give a residue, which was purified by column chromatography (silica gel, heptane/ethyl acetate, v/v=1/0-98/2). Fractions containing the pure compound were collected and concentrated in vacuo to give title compound (22.59 g, 62%) in the form of an oil.

TLC: Plates: Merck TLC-Plates, silica gel F_{254} , saturated 65 atmosphere in developing tank, UV detection, eluent: heptanes/ethyl acetate 4:1 (v/v); R_f of the title compound=0.64.

Preparation of 5-bromo-6-(cis-4-isopropylcyclohex-oxy)-2-methyl-pyridin-3-amine

To a stirred solution of 3-bromo-2-(cis-4-isopropylcyclohexoxy)-6-methyl-5-nitro-pyridine (22.59 g, 63.24 mmol) in EtOH/H₂O (600 mL/150 mL, 4/1 v/v), ammonium chloride $(3.45 \text{ g}, \tilde{6}3.24 \text{ mmol}, 1.0 \text{ eq})$ and iron powder (14.27 g, 253.0 mmol)mmol, 4 eq) were added at room temperature under inert atmosphere (Ar). The reaction mixture was stirred for 3 h under heating to reflux. As TLC indicated that the starting material was consumed at this point in time, the reaction mixture was cooled to room temperature and filtered through a pad of celite. The resulting filtrate was concentrated in vacuo and the residue partitioned between a 2 molar aqueous NaOH solution (100 mL) and ethyl acetate (150 mL). After phase separation, the aqueous phase was extracted once more with ethyl acetate (2×100 mL). The organic layer was washed with brine (400 mL), dried over anhydrous Na₂SO₄ and filtered. The solvent was removed in vacuo to afford the title compound (21.01 g, 101%) in the form of an oil.

TLC: Plates: Merck TLC-Plates, silica gel F_{254} , saturated atmosphere in developing tank, UV detection, eluent: heptanes/ethyl acetate 4:1 (v/v); R_f of the title compound=0.19.

Preparation of N'-[5-bromo-6-(cis-4-isopropylcyclo-hexoxy)-2-methyl-3-pyridyl]-N-ethyl-N-methyl formamidine

The Vilsmeier reagent was freshly prepared by the slow addition of phosphorus oxychloride (7.09 mL, 75.89 mmol, 15 1.2 eq) to a solution of N,N-ethylmethylformamide (6.61 g, 75.89 mmol, 1.2 eq) in dichloromethane (75 mL) at room temperature. After the addition was complete, the reaction mixture was stirred at room temperature for 1 h. The Vilsmeier reagent was then added drop wise over 40 min to a $_{20}$ solution of 5-bromo-6-(cis-4-isopropylcyclohexoxy)-2-methyl-pyridin-3-amine (20.70 g, 63.24 mmol) in dichloromethane (225 mL) at room temperature under inert atmosphere (Ar). Stirring was continued for 1.5 h at room temperature. The reaction mixture was then quenched by the addition of water (100 mL) and the pH was adjusted to 14 by the addition of a 2.0 molar aqueous NaOH solution (80 mL). The phases were separated and the aqueous phase extracted with dichloromethane (2×100 mL). The organic layer was washed with brine (250 mL), dried over anhydrous Na₂SO₄ and filtered. The solvent was removed in vacuo to give a residue, which was purified by column chromatography (silica gel, heptane/ethyl acetate, v/v=1/0-4/1). Fractions containing the pure compound were collected and concentrated in vacuo to give the title compound (20.23 g, 81%) as a yellow oil.

TLC: Plates: Merck TLC-Plates, silica gel F_{254} , saturated atmosphere in developing tank, UV detection, eluent: heptanes/ethyl acetate 4:1 (v/v); R_f of the title compound=0.29.

 $^{1}\mathrm{H}$ NMR (400 MHz, CDCl₃): δ (ppm)=7.45-7.30 (broad s, 1H), 7.23 (s, 1H), 5.32-5.28 (m, 1H), 3.55-3.24 (broad s, 2H), 40 2.98 (s, 3H), 2.35 (s, 3H), 2.04-2.01 (m, 2H), 1.63-1.46 (m, 7H), 1.20 (t, 3H), 1.18-1.10 (m, 1H), 0.91-0.89 (d, 6H).

Preparation of 3-bromo-2-(trans-4-isopropylcyclohexoxy)-6-methyl-5-nitro-pyridine

To a stirred suspension of 3-bromo-6-methyl-5-nitro-pyridin-2-ol (2.00 g, 8.58 mmol) in THF (8.6 mL), cis isopropylcyclohexanol (1.44 g, 8.58 mmol, 1.0 eq) and triphenylphosphine (2.73 g, 10.30 mmol, 1.2 eq) were added at room temperature under inert atmosphere (Ar). To this mixture, DIAD (diisopropyl diazodicarboxylate) (2.16 mL, 10.30 mmol, 1.2 eq) was added drop wise over 10 minutes while keeping the temperature below 40° C. The reaction mixture was stirred for 1.5 h under heating to. After this point in time, TLC indicted consumption of the starting material and the reaction mixture was allowed to reach room temperature and was quenched by adding water (20 mL). The water phase was extracted with ethyl acetate (3×20 mL). The organic layer was washed with brine (35 mL), dried over anhydrous Na₂SO₄ and filtered. The solvent was removed in vacuo to give a residue, which was purified by column chromatography (silica gel, heptane/ethyl acetate, v/v=1/0-9/1). Fractions containing the pure compound were collected and concentrated in vacuo to give the title compound (0.94 g, 30%) as an

TLC: Plates: Merck TLC-Plates, silica gel F_{254} , saturated atmosphere in developing tank, UV detection, eluent: heptanes/ethyl acetate 4:1 (v/v); R_f of the title compound=0.65.

Preparation of 5-bromo-6-(trans-4-isopropylcyclohexoxy)-2-methyl-pyridin-3-amine

To a stirred solution of 3-bromo-2-(trans-4-isopropylcyclohexoxy)-6-methyl-5-nitro-pyridine (0.917 g, 2.00 mmol) in EtOH/H₂O (24 mL/6 mL, 4/1 v/v), ammonium chloride (0.109 g, 2.00 mmol, 1.0 eq) and iron powder (0.452 g, 8.00 mmol, 4 eq) were added at room temperature under inert atmosphere (Ar). The reaction mixture was stirred under heating to reflux for 3 h. At this point in time, TLC indicated that the starting material was consumed. Therefore, the reaction mixture was allowed to reach room temperature and was filtered through a pad of celite. The filtrate was concentrated under reduced pressure and the residue partitioned between a 2 molar aqueous NaOH solution (20 mL) and ethyl acetate (30 mL). The phases were separated and the aqueous phase extracted with ethyl acetate (2×20 mL). The organic layer was washed with brine (40 mL), dried over anhydrous Na₂SO₄ and filtered. The solvent was removed in vacuo to afford the title compound (0.658 g, 100%) as an oil.

TLC: Plates: Merck TLC-Plates, silica gel F_{254} , saturated atmosphere in developing tank, UV detection, eluent: heptanes/ethyl acetate 4:1 (v/v); R_f of the title compound=0.19.

The Vilsmeier reagent was freshly prepared by the slow addition of phosphorus oxychloride (0.101 mL, 1.08 mmol, 1.2 eq) to a solution of N,N-ethylmethylformamide (0.094 g, 30 1.08 mmol, 1.2 eq) in dichloromethane (0.5 mL) at room temperature. After the addition was complete, the reaction mixture was stirred at room temperature for 1 h. Then the Vilsmeier reagent thus obtained was added drop wise to a solution of 5-bromo-6-(trans-4-isopropylcyclohexoxy)-2- 35 methyl-pyridin-3-amine (0.295 g, 0.90 mmol) in dichloromethane (1.0 mL) at room temperature under inert atmosphere (Ar). Stirring was continued was for 1.5 h at room temperature. The reaction was then quenched by the addition of a 2 molar aqueous NaOH solution (5 mL). The phases were 40 separated and the aqueous phase extracted with dichlormethane (2×10 mL). The organic layer was washed with brine (10 mL), dried over anhydrous Na₂SO₄ and filtered. The solvent was removed in vacuo to give a residue, which was purified by column chromatography (silica gel, heptane/ethyl 45 acetate, v/v=1/0-4/1). Fractions containing the pure compound were collected and concentrated in vacuo to give the title compound (0.191 g, 54%) as a light yellow oil.

TLC: Plates: Merck TLC-Plates, silica gel F_{254} , saturated atmosphere in developing tank, UV detection, eluent: hep-tanes/ethyl acetate 4:1 (v/v); R_f of the title compound=0.29.

¹H NMR (400 MHz, CDCl₃): δ (ppm)=7.45-7.30 (broad s, 1H), 7.22 (s, 1H), 4.93-4.85 (m, 1H), 3.55-3.22 (broad s, 2H), 2.98 (s, 3H), 2.35 (s, 3H), 2.19-2.15 (m, 2H), 1.80-1.77 (m, 2H), 1.50-1.09 (m, 5H), 1.28 (t, 3H), 0.88-0.86 (d, 6H).

Preparation of N-Ethyl-N-methyl-formamide

536

113 g (1.912 mol) of ethylmethylamine was dissolved in 500 mL of dry toluene. 75.86 mL of formic acid (92.2 g, 2.01 mol) was added drop-wise over 20 minutes. Hereby, an exothermic reaction was observed. The temperature was kept below 35° C. by cooling with an ice-water cooling bath. The turbid solution was stirred under heating to reflux (bath temperature of 175° C.) and the water removed using a Dean and Stark separator. 46 mL of water phase was thus separated. This water phase was extracted with 50 mL of ethyl acetate. And this ethyl acetate solution was added to the reaction mixture, after this one was allowed to reach room temperature. After evaporation of the solvent, the resulting liquid was subjected to a fractionating column distillation (Widmer column) at 80 mbar. 138 g of a colourless liquid of bp=95-96° C. was collected. As this material was contaminated with formic acid, the liquid was taken up in 1.0 L of ethyl acetate and kept over K₂CO₃ (occasional stirring, 24 h overall). The solution was then filtered and washed with water and the organic phase was again subjected to the distillation procedure mentioned before. This gave 130.4 g of the title compound as a liquid (bp=95-96° C., 80 mbar).

Preparation of methoxyethylmethyl-methanaminium methyl sulfate

128 g of N-ethyl-N-methyl-formamide was added slowly to 139 mL (185 g, 1.469 mol) of dimethyl sulfate (the dimethyl sulfate used was freshly distilled in vacuo after having been tried over K₂CO₃). The colourless solution was warmed under stirring to 50° C. whereupon an exothermic reaction was starting up. The heating bath was removed and the reaction mixture reached a temperature of 86° C. After the exothermicity came to an end, the reaction mixture was stirred at a temperature of 80° C. for an additional 3 hours. Thereafter, the reaction mixture was allowed to reach room temperature. The resulting liquid was then shaken in a separatory funnel first with 100 mL of toluene and, after phase separation, with 100 mL of diethyl ether. Traces of solvents were removed in vacuo (rotovapor) to give 294 g of the title compound in the form of a colourless liquid. The compound was used as such in the subsequent step.

Preparation of 5-Bromo-2-methyl-3-nitro-6-[2,2,2-trifluoro-1-(4-fluorophenyl)ethoxy]pyridine

60

To a stirred suspension of 3-bromo-6-methyl-5-nitro-pyridin-2-ol (0.10 g, 0.43 mmol) in THF (3 mL), 2,2,2-trifluoro-1-(4-fluorophenyl)ethanol (0.13 g, 0.64 mmol, 1.5 equiv) and triphenylphosphine (0.17 g, 0.64 mmol, 1.5 eq) were added at room temperature under inert atmosphere (Ar). To this mixture, DIAD (diisopropyl diazodicarboxylate) (0.13 mL, 0.64 mmol, 1.5 eq) was added dropwise over 10 minutes while keeping the temperature below 40° C. The reaction mixture was stirred for 6 h under heating at 60° C. After this time, TLC indicted that the starting material had been consumed and the reaction mixture was allowed to reach room temperature before quenching with water (10 mL). The water phase was extracted with ethyl acetate (3×15 mL). The organic layer was washed with brine (20 mL), dried over anhydrous Na₂SO₄ 30 and filtered. The solvent was removed in vacuo to give a brown residue, which was purified by combiflash column chromatography (silica gel, heptane/ethyl acetate, v/v=95/5). Fractions containing the pure compound were collected and concentrated in vacuo to give the title compound (0.11 g, 62% 35 yield) as a yellow oil.

TLC: Plates: Merck TLC-Plates, silica gel F_{254} , saturated atmosphere in developing tank, UV detection, eluent: heptanes/ethyl acetate 4:1 (v/v); R_f of the title compound=0.65.

Preparation of 2,2,2-Trifluoro-1-[4-(trifluoromethyl) phenyl]ethanol

$$F_3C$$
 \longrightarrow F_3C \longrightarrow CF_3

In a 50 mL two-neck flask, 2,2,2-trifluoro-1-[4-(trifluoromethyl)phenyl]ethanone (2.0 g, 8.3 mmol) was dissolved in methanol (8 mL) and sodium borohydride (0.31 g, 8.3 mmol) was added carefully in portions with ice-bath cooling. The resultant colourless solution was stirred at RT for 2 hours and monitored by TLC. Upon the disappearance of all starting material, 5 mL of an aqueous saturated NH₄Cl solution was slowly added to the reaction mixture with additional stirring for 10 min. The later was extracted 3 times with 20 mL of EtOAc and the organic fractions were combined and washed with 10 mL of brine, dried over Na₂SO₄, and filtered. The solvent was removed under reduced pressure to give 2,2,2-trifluoro-1-[4-(trifluoromethyl)phenyl]ethanol (2.13 g, quantitative) as a colourless oil which was used with no further purification.

TLC: Plates: Merck TLC-Plates, silica gel F_{254} , saturated atmosphere in developing tank, UV detection, eluent: heptanes/ethyl acetate 2:1 (v/v); R_f of the title compound=0.50.

Preparation of 5-Bromo-2-methyl-3-nitro-6-[2,2,2-trifluoro-1-[4-(trifluoromethyl)phenyl]ethoxy]pyridine

$$F_3C$$
 OH
 OH
 N
 NO_2
 OF_3
 F_3C
 OF_3
 OF_3
 OF_3
 OF_3
 OF_3
 OF_3
 OF_4
 OF_5
 OF_5

To a stirring suspension of 3-bromo-6-methyl-5-nitro-pyridin-2-ol (0.25 g, 1.07 mmol) in THF (7 mL), 2,2,2-trifluoro-1-[4-(trifluoromethyl)phenyl]ethanol (0.39 g, 1.61 mmol, 1.5 equiv) and triphenylphosphine (0.42 g, 1.61 mmol, 1.5 eq) were added at room temperature under inert atmosphere (Ar). To this mixture, DIAD (diisopropyl diazodicarboxylate) (0.33 mL, 1.61 mmol, 1.5 eq) was added dropwise over 10 minutes while keeping the temperature below 40° C. The reaction mixture was stirred for 6 h under heating at 60° C. After this time, TLC indicted that the starting material was consumed and the reaction mixture was allowed to reach room temperature before quenching with water (10 mL). The water phase was extracted with ethyl acetate (2×50 mL). The organic layer was washed with brine (20 mL), dried over anhydrous Na₂SO₄ and filtered. The solvent was removed in vacuo to give a brown residue, which was purified by combiflash column chromatography (silica gel, heptane/ethyl acetate, v/v=95/5). Fractions containing the pure compound were collected and concentrated in vacuo to give the title compound (0.18 g, 41% yield) as a yellow oil.

TLC: Plates: Merck TLC-Plates, silica gel F_{254} , saturated atmosphere in developing tank, UV detection, eluent: heptanes/ethyl acetate 2:1 (v/v); R_r of the title compound=0.74.

Preparation of 1,1,1-Trifluorohept-6-en-2-ol

To a ice-bath cooled solution of hex-5-enal (500 mg, 4.331 mmol) and trimethyl(trifluoromethyl)silane (0.74 g, 5.13 mmol, 1.2 equiv.) in THF (10 mL) was added tetrabutylammonium hydrofluoride (10 mg, 0.04 mmol). The ice bath was removed and the reaction progress was monitored via GCMS and 1H NMR. Upon complete transformation of the starting material the reaction mixture was treated with 2M HCl and

\$539\$ stirred for an additional 2 h. Then, 50 mL of $\rm Et_2O$ was introduced and the layers were separated. The aqueous fraction

was additionally extracted with Et₂O and the combined

with MgSO₄ and filtration the solvent was removed under

reduced pressure and the resultant crude residue was purified

by column chromatography (silica gel, pentane/Et₂O, v/v=8/

organic phases were washed sequentially with a saturated aqueous NaHCO₃ solution, water, and brine. After drying 5

2). Fractions containing the pure compound were collected and concentrated in vacuo to give 1,1,1-trifluorohept-6-en-2-ol (225 mg, 31% yield) as a yellow oil.

Using techniques analogous to those above and further techniques known to the person skilled in the art, for example as found in WO 08/101,682, the compounds found in Table Q were prepared.

TABLE Q

LC-Method: $R_t(min);$ MS-ESI $(m/z;\,(M+H)^+)$ Q.001 Method 4: 1.42 min; 370 Q.002 Method 4: . 1.46 min; Q.003 Method 4: 1.30 min; 328 Q.004 Method 4: 1.33 min; 342 Q.005 Method 4: 1.17 min; 398

540

TABLE Q-continued

	TABLE Q-continued	
		LC-Method: R_r (min); MS-ESI (m/z; (M + H) ⁺)
Q.006	$\begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	Gum
Q.007		Method 4: 1.32 min; 292
Q.008	$\begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	Method 4: 1.39 min; 356
Q.009	N N N N N N N N N N	Mp 72-73° C.
Q.010	$\begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	Method 4: 1.42 min; 356
Q.011	O O O O O O O O O O	Gum

LC-Method: R_t (min); MS-ESI $(m/z; (M + H)^+)$

TABLE Q-continued

		LC-Method: R _r (min); MS-ESI (m/z; (M + H)+
Q.018	$\bigcap_{\mathrm{D}} \bigcap_{\mathrm{Br}} \bigcap_{\mathrm{N}} $	Gum
Q.019	$\bigcup_{N} \bigcup_{N} \bigcup_{N$	Gum
Q.020	-0 \longrightarrow N	Gum
Q.021	N N N N N N N N N N N N N N N N N N N	Gum
Q.022	N N N N N N N N N N N N N N N N N N N	Gum
Q.023	$\bigcap_{\mathrm{Br}} \mathbb{N}$	Gum

TABLE Q-continued

	TABLE Q-continued	
		LC-Method: R_t (min); MS-ESI $(m/z; (M + H)^+)$
Q.024	/	Gum
	N N N N N N N N N N	
Q.025	F O N N N N N N N N N N N N N N N N N N	Gum
Q.026 F_		Gum
Q.027	Br N	- Gum
	N N	
	O Br	
Q.028		Method 4: 1.32 min; 418
Q.029		Liquid
	N N N N N N N N N N N N N N N N N N N	
Q.030	Br N N N	Method 4: 1.53 min; 544

TABLE Q-continued

	LC-Method: R, (min); MS-ESI (m/z; (M + H)*)
Q.031 O N N N Br	Gum
Q.032 N N N N N N N	Liquid
Q.033 N N N N N N	Method 4: 1.31 min; 444
Q.034 O N N N N N N N N N N N N	Method 4: 1.22 min; 340
Q.035 HO N N Br	Method 4: 0.99 min; 358
Q.036 HO N N N N N N N N N N N N N N N N N	Method 4: 0.98 min; 388
Q.037	Solid

		LC-Method: R_{t} (min); MS-ESI $(m/z; (M + H)^{+})$
Q.038	O N N N N N N N N N N N N N N N N N N N	Liquid
Q.039	N N N N N N N N N N N N N N N N N N N	Method 4: 1.48 min; 473
Q.040	O N	Liquid
Q.041	N N N N N N N N N N	Liquid
Q.042	N N N N N N N N N N N N N N N N N N N	Liquid
Q.043	HO N N N N N N N N N N N N N N N N N N N	Liquid
Q.044	$\bigcup_{\mathrm{OH}} \bigcup_{\mathrm{Br}} \bigcup_{\mathrm{N}} \bigcup_{\mathrm{N}}$	Method 4: 1.28 min; 446

LC-Method: $R_t(min);$ MS-ESI $(m/z;\,(M+H)^+)$

		LC-Method: R, (min); MS-ESI (m/z; (M + H)+)
Q.052		Method 4: 1.18 min; 360
Q.053	Br N N N N N N N N N N N N N N N N N N N	Liquid
Q.054	O C N N N N N	Liquid
Q.055	$\bigcup_{N \in \mathbb{R}^{N}} \bigcup_{N \in \mathbb{R}^{N}} \bigcup_{N$	Liquid
Q.056	HO O Br	Solid
Q.057		Method 4: 1.19 min; 276
Q.058		Method 4: 1.64 min; 348

		LC-Method: R_t (min); MS-ESI (m/z; (M + H) ⁺)
Q.059	CI————————————————————————————————————	Method 4: 1.00 min; 392
Q.060		Method 4: 1.16 min; 420
Q.061		Liquid
Q.062	$\bigcup_{O} \bigvee_{Br} \bigvee_{N} \bigvee_{N}$	Method 4: 1.34 min; 388
Q.063	N N N N N N N N N N N N N N N N N N N	Method 4: 1.16 min; 338
Q.064	CI O N	Mp 77-78° C.
Q.065		Liquid

		LC-Method: R_t (min); MS-ESI (m/z; (M + H)*
Q.066	O N N N N N N N N N N N N N N N N N N N	Liquid
Q.067	Br N	Liquid
Q.068	N N N N N N N N N N N N N N N N N N N	Solid
Q.069		Method 4: 1.30 min; 410
Q.070	N N N N N N N N N N N N N N N N N N N	Liquid
Q.071	CI	Gum

		LC-Method: R _t (min); MS-ESI (m/z; (M + H)+)
Q.072	ONH NH NN N	Solid
Q.073	N N N N N N N N N N	Solid
Q.074	N N N N N N N N N N	Liquid
Q.075	N N N N N N N N N N N N N N N N N N N	Liquid
Q.076	N N N N N N N N N N	Liquid
Q.077	N N N N N N N N N N	Liquid
Q.078	=	Liquid

TABLE Q-continued

	TIBLE & continued	
		LC-Method: R _t (min); MS-ESI (m/z; (M + H)+)
Q.079	N-	Method 4: 1.39 min; 368
Q.080		Liquid
	=	
Q.081		Liquid
Q.082	$\bigcup_{N} \bigvee_{N} \bigvee_{N} \bigvee_{N}$	Liquid
Q.083	N N N N N N N N N N	Liquid
Q.84	N N N N N N N N N N N N N N N N N N N	Liquid
Q.085	$\begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	Gum

LC-Method: R_t (min); MS-ESI (m/z; (M + H)⁺)

Q.086 Cl
$$N$$
 Liquid N Liquid

		LC-Method: R _t (min); MS-ESI (m/z; (M + H)+)
Q.093	CI	Gum
	N N N N N N N N N N N N N N N N N N N	
Q.094	N N N N N N N N N N	Liquid
Q.095	O N	Method 1: 13.577 min; 362
Q.096	Cl O N	Mp 81-82° C.
Q.097	CI O Br N	Method 2: 11.956 min; 398
Q.098	N N N N N N N N N N	Method 1: 11.773 min; 352
Q.099	$\bigcup_{\mathrm{Br}}^{\mathrm{N}} \bigcup_{\mathrm{N}}^{\mathrm{N}}$	Method 1: 11.755 min; 376
Q.100		Method 1: 12.320 min; 390

		LC-Method: R_t (min); MS-ESI $(m/z; (M + H)^+)$
Q.101	B_{r} N	Method 1: 12.207 min; 440
Q.102	$ \begin{array}{c} $	Method 1: 11.873 min; 376
Q.103	$\begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	Method 1: 13.153 min; 382
Q.104	$\bigcup_{\mathrm{Br}}^{\mathrm{N}} \bigvee_{\mathrm{N}}^{\mathrm{N}}$	Method 1: 6.418 min; 438
Q.105	F O N	Method 1: 11.571 min; 400
Q.106	$\bigcup_{\mathrm{Br}}^{\mathrm{N}} \bigcup_{\mathrm{N}} \bigcup_{\mathrm{N}}$	Method 1: 12.115 min; 365
Q.107	$\bigcup_{\mathrm{Br}}^{\mathrm{N}} \bigcup_{\mathrm{N}}^{\mathrm{N}} \bigcup_{\mathrm{N}}^{\mathrm$	Mp 107-108° C.

		LC-Method: R_t (min); MS-ESI $(m/z; (M + H)^+)$
Q.108 N S	$O \longrightarrow N$ N N N N N N N N N	Method 2: 12.713 min; 523
Q.109		Method 1: 12.881 min; 479
Q.110 O	N N N	Method 2: 12.214 min; 402
Q.111 N O O	N N N	Mp 57-59° C.
Q.112 O-	N N N N	Method 2: 12.236 min; 390
Q.113 F O O	N N N	Method 1: 12.030 min; 412
Q.114 F	Br N	Method 2: 13.002 min; 404

	TABLE Q-continued	
		LC-Method: R_t (min); MS-ESI $(m/z; (M + H)^+)$
Q.115	N N N N N N N N N N	Method 1: 9.589 min; 393
Q.116	$\begin{array}{c c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & &$	Method 2: 11.625 min; 394
Q.117	N N N N N N N N N N	Method 2: 6.956 min; 377
Q.118		Method 2: 12.577 min; 368
Q.119		Method 1: 13.850 min; 444
Q.120	N N N N N N N N N N	Method 2: 11.861 min; 354
Q.121	$\bigcup_{\mathrm{Br}}^{\mathrm{N}} \bigvee_{\mathrm{N}}^{\mathrm{N}} \bigvee_{\mathrm{N}}^{\mathrm{N}}$	Method 2: 12.977 min; 451

	TABLE Q-continued	
		LC-Method: R_t (min); MS-ESI (m/z; (M + H)+)
Q.122		Method 2 13.353 min; 394
Q.123	\overrightarrow{Br} \overrightarrow{N} N	Mp 120-121° C.
Q.124	$\begin{array}{c} F \\ \\ \\ N \\ \\ S \end{array}$	Мр 98-99° С.
Q.125	F N S N	Mp 101-102° C.
Q.126	B_{r} B_{r} B_{r}	Method 1: 13.029 min; 480
Q.127	Br N	Method 2: 13.168 min; 481

		LC-Method: R_t (min); MS-ESI $(m/z; (M + H)^+)$
Q.128		Mp 60-62° C.
Q.129	F O N N N	Mp 46-48° C.
Q.130	$\begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	Method 2: 3.41 min; 377
Q.131	$F \longrightarrow \bigcup_{O \longrightarrow N} N \longrightarrow N$	Method 2: 12.242 min; 408
Q.132		Method 1: 12.688 min; 368
Q.133		Method 1: 12.522 min; 368
Q.134	$\bigcup_{\mathrm{Br}}^{\mathrm{N}} \bigvee_{\mathrm{N}}^{\mathrm{N}}$	Method 2: 12.979 min; 380

		LC-Method: R_t (min); MS-ESI $(m/z; (M + H)^+)$
Q.135	$\begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	Method 3: 1.49 min; 396: Cis
Q.136	F F N	Method 1: 10.914 min; 431
Q.137	$\begin{array}{c c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & &$	Mp 43-45° C.
Q.138	N N N N N N N N N N	Method 1: 13.065 min; 402
Q.139	N N N N N N N N N N	Method 1: 13.387 min; 370
Q.140		Method 2: 12.176 min; 366

		LC-Method: R_t (min); MS-ESI $(m/z; (M + H)^+)$
Q.141	N N N N N N N N N N	Method 1: 12.712 min; 368
Q.142	$\bigcup_{N \to \infty} N = \sum_{N \to \infty} N$	Method 1: 13.557 min; 466
Q.143	$\begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	Mp 71-73° C.
Q.144	S N	Method 1: 11.879 min; 503
Q.145	$\begin{array}{c c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & &$	Мр 106-107° С.
Q.146	$\begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	Method 1: 11.862 min; 344

		LC-Method: R_r (min); MS -ESI $(m/z; (M + H)^+)$
Q.147	$\begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	Method 1: 12.605 min; 404
Q.148	$\bigcup_{\mathrm{Br}}^{\mathrm{N}} \bigvee_{\mathrm{N}}^{\mathrm{N}}$	Method 1: 12.704 min; 405
Q.149	$-\!$	Method 1: 12.642 min; 370
Q.150	$\begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	Method 1: 13.317 min; 372
Q.151	N N N N N N N N N N	Liquid
Q.152	F O N N	Mp 100-101° C.

	TABLE Q continued	
		LC-Method: R _t (min); MS-ESI (m/z; (M + H) ⁺)
Q.153	F F F O N N N N N N N N N N N N N N N N	Mp 43-44° C.
Q.154	N N N N N N N N N N	Mp 53-57° C.
Q.155		Mp 75-78° C.
Q.156	$\begin{array}{c c} & & \\ $	Mp 90-91° C.
Q.157	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Mp 125-127° C.
Q.158	S N	Liquid
Q.159	$\bigcup_{N=1}^{H} \bigcup_{N=1}^{N} \bigcup_{N$	Liquid

		LC-Method: R_r (min); MS-ESI $(m/z; (M + H)^*)$
Q.160		Liquid
Q.161	$\begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \\ \\ \end{array} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \\ \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \end{array} \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	Liquid
Q.162		Liquid
Q.163	N N N N N N N N N N N N N N N N N N N	Mp 90-95° C.
Q.164		Mp 88-90° C.

TABLE Q-continued

	LC-Method: R _r (min); MS-ESI (m/z; (M + H) ⁺)
Q.165 N O N N N N N N N N N N N N N N N N N	Liquid
Q.166 —O N N N N N	Liquid
Q.167 $N \longrightarrow N $	Liquid
Q.168 O N Br	Liquid
Q.169 O Br	Liquid -N
Q.170 $F \longrightarrow F$ Br	Liquid

		LC-Method: R_t (min); MS-ESI (m/z; (M + H) ⁺)
Q.171	O N	Liquid
Q.172		Mp 72-76° C.
Q.173	N N N N N N N N N N	Liquid
Q.174	N N N N N N N N N N	Liquid
Q.175	N N N N N N N N N N	Liquid
Q.176	r r r r r r r r r r	Liquid
Q.177		Liquid

TABLE Q-continued

		LC-Method: R _r (min); MS-ESI (m/z; (M + H) ⁺)
Q.178	F O N	Method 2: 12.011 min; 460
Q.179		Method 1: 13.777 min; 444; Trans
Q.180		Method 1: 13.653 min; 444; Cis
Q.181	F O N N N N N	Method 2: 11.260 min; 334
Q.182		Method 1: 13.163 min; 318; Trans
Q.183		Method 1: 14.926 min; 318; Cis

TABLE Q-continued

		LC-Method: R _r (min); MS-ESI (m/z; (M + H)*)
Q.184 F	N_N_N_N_N	Method 2: 12.116 min; 348
Q.185	N_N_N_N_N	Method 1: 14.254 min; 332; Trans
Q.186	N_N_N_N_N	Method 1: 15.845 min; 332; Cis
Q.187 F O	N N N N	Method 2: 12.707 min; 426
Q.188 F O	N N N N N	Method 2: 12.145 min; 426
Q.189 F O O		Method 2: 11.943 min; 422

		LC-Method: $R_r(min);$ MS-ESI $(m/z; (M + H)^+)$
Q.190	$\begin{array}{c} F \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	Method 1: 12.216 min; 436
Q.191	F O N	Method 2: 12.769 min; 426
Q.192	F O N	Method 2: 12.121 min; 424
Q.193	F N	Method 2: 11.891 min; 424
Q.194	r r r r r r r r r r	Method 2: 11.881 min; 422
Q.195	$\bigcup_{\mathrm{Br}}^{\mathrm{N}} \bigcup_{\mathrm{N}}^{\mathrm{N}} \bigcup_{\mathrm{N}}^{\mathrm$	Mp 52-54° C.

		LC-Method: R_t (min); MS-ESI $(m/z; (M + H)^+)$
Q.196	Br N N N	Method 1: 12.439 min; 466
Q.197		Method 1: 11.886 min; 416
Q.198	$\bigcup_{\mathrm{Br}}^{\mathrm{N}} \bigvee_{\mathrm{N}}^{\mathrm{N}} \bigvee_{\mathrm{N}}^{\mathrm{N}}$	Method 1: 11.886 min; 390
Q.199		Method 1: 11.955 min; 418
Q.200	$\bigcup_{O \longrightarrow N} N \longrightarrow N$ $\bigcup_{Br} N$	Method 1: 12.096 min; 402

TABLE Q-continued

	TABLE Q-continued	
		LC-Method: R, (min); MS-ESI (m/z; (M + H)+)
Q.201	N N N N N N N N N N	Method 1: 12.796 min; 418
Q.202	Br N N N	Method 1: 12.154 min; 496
Q.203	$\begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	Method 2: 13.148 min; 404
Q.204	$F \longrightarrow O \longrightarrow N \longrightarrow N$	Method 2: 11.780 min; 412
Q.205	Cl N	Method 1: 6.785 min; 444
Q.206	$F \longrightarrow N \longrightarrow $	Mp 75-78° C.
Q.207	$\begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	Mp 57-58° C.

TABLE Q-continued

	TABLE Q-continued	
		LC-Method: R_t (min); MS-ESI $(m/z; (M + H)^+)$
Q.208	S N	Method 1: 10.753 min; 368
Q.209	N N N N N N N N N N	Method 1: 7.472 min; 413
Q.210	$\bigcup_{N \in \mathbb{N}} \bigcup_{N \in \mathbb{N}} \bigcup_{$	Mp 134-135° C.
Q.211		Method 1: 11.913 min; 440
Q.212		Method 1: 11.392 min; 410
Q.213	HO N N N N	Method 1: 8.301 min; 370

TABLE Q-continued

	TABLE Q-continued	
		LC-Method: R_t (min); MS-ESI (m/z; (M + H)+)
Q.214	F O N	Method 1: 11.318 min; 364
Q.215	F O N	Method 1: 12.017 min; 384
Q.216	F O N N N N N N N N N N N N N N N N N N	Method 2: 12.660 min; 374
Q.217	$F \longrightarrow \bigcap_{N} N \longrightarrow N$ F	Method 1: 12.015 min; 426
Q.218	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Method 2: 12.403 min; 408
Q.219	$\bigcup_{\mathrm{Br}} \mathbb{N} \bigcup_{\mathrm{N}} \mathbb{N}$	Method 2: 13.469 min; 418
Q.220	N N N N N N N N N N	Method 1: 11.837 min; 354

TABLE Q-continued

		LC-Method: R, (min); MS-ESI (m/z; (M + H)+)
Q.221	Cl N	Method 1: 13.221 min; 458
Q.222	N N N N N N N N N N	Method 2: 11.427 min; 340
Q.223		Method 1: 12.006 min; 390
Q.224	$\bigcup_{\mathrm{Br}}^{\mathrm{N}} \bigvee_{\mathrm{N}}^{\mathrm{N}}$	Method 2: 12.567 min; 416
Q.225	$\bigcup_{\mathrm{Br}} N \longrightarrow N$	Method 2: 13.408 min; 430
Q.226	$\bigcup_{\mathrm{Br}} N \longrightarrow N$	Method 1: 12.686 min; 416
Q.227	$\bigcup_{\mathrm{Br}} \mathbb{N} \longrightarrow \mathbb{N}$	Method 2: 13.431 min; 430
Q.228	F O N N N N N N N N N N N N N N N N N N	Method 2: 12.346 min; 362

	TABLE Q-continued	
		LC-Method: R_t (min); MS-ESI $(m/z; (M + H)^*)$
Q.229	F N N N N N N N N N N N N N N N N N N N	Method 2: 11.570 min; 358
Q.230	F N N N	Method 1: 12.261 min; 372
Q.231	$\bigcup_{N \longrightarrow N} N$	Method 1: 13.535 min; 394
Q.232	$\begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	Method 1: 13.295 min; 394
Q.233		Method 2: 11.937 min; 422

TABLE Q-continued

	TABLE Q-continued	
		LC-Method: R_r (min); MS-ESI $(m/z; (M + H)^+)$
Q.234	$\begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	Method 1: 14.173 min; 398
Q.235	$\begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	Mp 55-57° C.
Q.236	$\bigcup_{O} \bigvee_{H} \bigvee_{O} \bigvee_{Br} \bigvee_{N} \bigvee_{$	Mp 40-42° C.
Q.237	$\begin{array}{c c} & & \\ $	Method 1: 8.524 min; 382
Q.238	$\bigcup_{\mathrm{D}} \sum_{\mathrm{N}} \sum$	Method 1: 19.177 min; 430
Q.239	$\bigcup_{O} \bigvee_{N} \bigvee_{N} \bigvee_{N}$	Method 1: 18.583 min; 416
Q.240	N O N	Method 1: 10.070 min; 447

		LC-Method: R_{ℓ} (min); MS-ESI (m/z; (M + H) ⁺)
Q.241	$\bigcup_{\mathrm{Br}}^{\mathrm{O}} \bigvee_{\mathrm{N}}^{\mathrm{N}} \bigvee_{\mathrm{N}}^{\mathrm{N}}$	Method 1: 12.850 min; 446
Q.242	$\bigcup_{N} \bigcup_{N} \bigcup_{N$	Method 1: 8.079 min; 427
Q.243		Method 1: 12.200 min; 402
Q.244	O O N	Method 1: 9.090 min; 356
Q.245	S O N	Method 1: 8.672 min; 382
Q.246	$\begin{array}{c} \begin{array}{c} \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	Method 1: 11.718 min; 383

	TABLE Q-continued	
		LC-Method: R _t (min); MS-ESI (m/z; (M + H) ⁺)
2.247	$\begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \end{array}$	Method 1: 13.430 min; 368; Cis
2.248		Method 1: 13.051 min; 348; Cis
9,249		Method 1: 14.416 min; 358; Cis
Q .250		Method 1: 13.413 min; 342; Cis

		LC-Method: R_t (min); MS-ESI $(m/z; (M + H)^+)$
Q.251		Method 1; 14.420 min; 346; Cis
Q.252		Method 1: 13.397 min; 346; Trans
Q.253		Method 2: 13.397 min; 342; Trans
Q.254		Method 1: 13.900 min; 356
Q.255	F O N	Мр 178-180° С.

TABLE Q-continued

	LC-Method: R_r (min); MS-ESI (m/z; (M + H) ⁺)
$Q.256$ F O B_T	O Mp 165-168° C.
Q.257 N—	Method 3: 1.42 min; 370
Q.258	Method 3: 1.55 min; 412
Q.259	Method 3: 1.68 min; 454
Q.260 F F F Br	Method 3: 1.34 min; 412; (S)
Q.261 F O N Br	Method 3: 1.34 min; 412; (R)

		LC-Method: R_r (min); MS-ESI (m/z; (M + H) ⁺)
Q.262	N N N N N N N N N N N N N N N N N N N	Ionic liquid
Q.263	F N N N	Method 3: 1.41 min; 410
Q.264	F O N	Method 3: 1.42 min; 428
Q.265	F O N	Method 3 1.40 min; 416
Q.266	F O N	Method 3: 1.21 min; 411

TABLE Q-continued

	TABLE Q-continued	
		LC-Method: R_t (min); MS-ESI $(m/z; (M + H)^+)$
Q.267	F N N N N N N N N N N N N N N N N N N N	Method 3: 1.55 min: 452
Q.268	N = N $N = N$ $N = N$ $N = N$ $N = N$	Method 3: 1.52 min; 396; Trans
Q.269	N N N N N N N N N N	Method 3: 1.43 min: 430; Cis
Q.270	N N N N N N N N N N N N N N N N N N N	Mp 111-113° C.; Trans
Q.271	N N N N N N N N N N	Method 1: 13.010 min; 372

TABLE Q-continued

	TABLE Q-continued	
		LC-Method: R_r (min); MS-ESI (m/z; (M + H) ⁺)
Q.272	N N N N N N N N N N	Method 1: 11.512 min; 386
Q.273	NSi N N N	Method 1: 14.147 min; 400
Q.274	N N N N N N N N N N	Method 1: 14.704 min; 414
Q.275	$\bigcup_{\mathrm{Br}} N \longrightarrow N$	Method 1: 12.441 min; 388
Q.276	$\bigcup_{\mathrm{Br}} \mathbb{N} \bigcup_{\mathrm{N}} \mathbb{N}$	Method 1: 12.949 min; 402
Q.277	$\begin{array}{c c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & &$	Method 1: 12.412 min; 388
Q.278	$\begin{array}{c c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & &$	Method 1: 12.930 min; 402
Q.279	N N N N N N N N N N	Method 1: 11.765 min; 390

TABLE Q-continued

		$ \begin{array}{c} \text{LC-Method:} \\ R_{\ell}(\text{min}); \\ \text{MS-ESI} \\ (\text{m/z}; (\text{M} + \text{H})^*) \end{array} $
Q.280 F		Method 1: 13.223 min; 376
Q.281		Method 1: 9.144 min; 366
Q.282		Method 1: 9.411 min; 380
Q.283	N N N N N N N N N N	Method 1: 13.076 min; 404
Q.284	N N N N N N N N N N	Method 1: 13.397 min; 404
Q.285	$\begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	Method 1: 12.345 min; 390
Q.286	N N N N N N N N N N	Method 1: 12.464 min; 390

		LC-Method: R_t (min); MS-ESI (m/z; (M + H) ⁺)
Q.287	$\bigcup_{\mathrm{Br}} \mathbb{N} \longrightarrow \mathbb{N}$	Method 1: 13.376 min; 418
Q.288	$\bigcup_{\mathrm{Br}}^{\mathrm{N}} \bigcup_{\mathrm{N}}^{\mathrm{N}} \bigcup_{\mathrm{N}}^{\mathrm{N}}$	Method 2: 12.056 min; 354
Q.289	F F F F F F F F F F	Method 1: 11.736 min; 412
Q.290	$\bigcap_{F} \bigcap_{Br} \bigcap_{N} \bigcap_{$	Mp 81-85° C.
Q.291		Method 1: 11.782 min; 408
Q.292	$ \underbrace{ \left(\begin{array}{c} N \\ N \\ \end{array} \right) }_{F} $	Method 1: 12.318 min; 422
Q.293	N N N N N N N N N N	Method 1: 12.503 min; 366

TABLE Q-continued

	TABLE Q-continued	
		LC-Method: R_t (min); MS-ESI $(m/z; (M + H)^+)$
Q.294		Method 1: 13.526 min; 438
Q.295		Mp 59-62° C.
	N N N N N N N N N N	
Q.296	\sim	Method 1: 11.641 min; 312
Q.297	N	Method 1: 11.974 min; 326
Q.298	N	Mp 57-61° C.
	$_{\mathrm{F}}$ $_{\mathrm{Br}}$	
Q.299	$rac{1}{\sqrt{\frac{1}{2}}} \int_{\mathrm{Br}}^{\mathrm{N}} \int_{\mathrm{N}}^{\mathrm{N}} \int_{\mathrm{N}}$	Method 1: 12.313 min; 394
Q.300	\mathbb{N}	Mp 53-56° C.
	Cl Br N	

TABLE Q-continued

		$ \begin{array}{c} \text{LC-Method:} \\ R_{\gamma}(\text{min}); \\ \text{MS-ESI} \\ (\text{m/z}; (\text{M} + \text{H})^{+}) \end{array} $
Q.301	C_{l} N	Method 1: 12.908 min; 410
Q.302	B_{r}	Method 1: 12.267 min; 440
Q.303	B_{r} B_{r} B_{r} B_{r}	Method 1: 12.897 min; 454
Q.304	N N N N N N N N N N	Mp 82-86° C.
Q.305	N N N N N N N N N N	Mp 77-81° C.
Q.306	N N N N N N N N N N	Method 1: 12.789 min; 404
Q.307	N N N N N N N N N N	Method 1: 13.266 min; 418
Q.308	N N N N N N N N N N	Method 1: 13.998 min; 396

TABLE Q-continued

IABLE Q-C	LC-Method: R_t (min); MS-ESI $(m/z; (M + H)^*)$
Q.309 N Br	Method 1: 13.324 min; 466
Q.310 O N Br	Method 1: 13.568 min; 462
Q.311 N-	Method 1: 13.806 min; 462
Q.312 N-	Method 1: 14.266 min; 476
Q.313	Method 1: 14.120 min; 476

		LC-Method: R_r (min); MS-ESI (m/z; (M + H)*)
Q.314	N N N N N N N N N N	Method 1: 14.042 min; 480
Q.315	O N N N N N N N	Method 1: 12.395 min; 366
Q.316		Method 1: 7.382 min; 352
Q.317	F O N	Mp 78-81° C.
Q.318	F O N	Method 1: 12.537 min; 430
Q.319	$\bigcup_{\mathrm{Br}} \mathbb{N} = \mathbb{N}$	Method 1: 13.594 min; 416

TABLE Q-continued

		LC-Method: R, (min); MS-ESI (m/z; (M + H) ⁺)
Q.320	$\begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	Mp 27-30° C.
Q.321	$\bigcup_{\mathrm{Br}}^{\mathrm{N}} \bigvee_{\mathrm{N}}^{\mathrm{N}}$	Method 1: 12.591 min; 390
Q.322	F O	Mp 67-68° C.
Q.323	F O N	Mp 83-84° C.
Q.324	$\begin{array}{c c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & &$	Method 1: 12.813 min; 390
Q.325	$\bigcup_{\mathrm{Br}}^{\mathrm{N}} \bigvee_{\mathrm{N}}^{\mathrm{N}}$	Mp 56-57° C.
Q.326	F O Br N	Mp 61-62° C.
Q.327	F O Br N	Method 1: 13.121 min; 426

	TABLE Q-continued	
		LC-Method: R_{t} (min); MS-ESI $(m/z; (M + H)^{+}$
Q.328	H_2N N N N N N N N N N	Liquid
Q.329	$\bigcup_{\mathrm{Br}} \mathbb{N} \longrightarrow \mathbb{N}$	Method 1: 14.077 min; 480
Q.330	$\bigcup_{O} \bigcup_{Br} \bigcup_{N} \bigcup_{$	Method 1: 11.439 min; 392
Q.331	$\begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	Method 1: 11.711 min; 340
Q.332	O O O O O O O O O O	Method 1: 9.781 min; 382; Isomer 1
Q.333		Method 1: 9.758 min; 382 Isomer 2

		LC-Method: R _r (min); MS-ESI (m/z; (M + H)*)
Q.334	$\begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	Method 6: 0.92 min; 396
Q.335	N N N N N N N N N N	Method 1: 11.804 min; 408
Q.336	S=0 N N N N N N N	Method 1: 8.965 min; 424
Q.337	$\begin{array}{c c} & & & \\ & & \\ & & & \\ & & \\ & & \\ & & & \\ & & \\ & & & \\ & & \\ & & \\ & & & \\ & & \\ & & & \\ & &$	Mp 104-108° C.
Q.338	$N \longrightarrow N$	Method 1: 10.918 min; 331
Q.339	$N \longrightarrow N$	Method 1: 11.312 min; 344
Q.340	N N N N N N N N N N	Method 1: 12.292 min; 366

TABLE Q-continued

	TABLE Q-continued	
		LC-Method: R, (min); MS-ESI (m/z; (M + H)+)
Q.341		Method 1: 11.200 min; 290
Q.342		Method 1: 11.930 min; 304
Q.343		Method 1: 14.959 min; 360
Q.344	$\begin{array}{c c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & &$	Method 1: 13.527 min; 418
Q.345	$\begin{array}{c c} & & \\ $	Method 1: 12.808 min; 404
Q.346	$\begin{array}{c c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & &$	Method 1: 13.160 min; 404
Q.347	$\begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	Method 1: 11.431 min; 312

		LC-Method: R_r (min); MS-ESI $(m/z; (M + H)^+)$
Q.348		Method 1: 11.698 min; 326
Q.349	N N N N N N N N N N	Method 1: 12.595 min; 390
Q.350		Method 1: 11.248 min; 312
Q.351		Mp 110-114° C.
Q.352		Method 1: 11.715 min; 326
Q.353	N N N N N N N N N N	Method 1: 12.754 min; 404

		LC-Method: R_r (min); MS-ESI $(m/z; (M + H)^+)$
Q.354		Method 1: 11.787 min; 326
Q.355		Method 1: 12.370 min; 340
Q.356	N N N N N N N N N N	Method 1: 12.096 min; 354
Q.357	N = N $N = N$ $N =$	Method 1: 12.656 min; 368
Q.358		Method 1: 11.887 min; 326
Q.359		Method 1: 12.700 min; 340

	LC-Method: R_t (min); MS-ESI $(m/z; (M + H)^+)$
Q.360	Method 1: 12.328 min; 340
Q.361	Method 1: 12.882 min; 354
Q.362	Method 1: 15.320 min; 354
Q.363	Method 1: 12.506 min; 341
Q.364	Method 1: 12.385 min; 390

TABLE Q-continued

	TABLE Q-continued	
		LC-Method: R_t (min); MS-ESI $(m/z; (M + H)^+)$
Q.365	N N N N N N N N N N	Method 1: 13.743 min; 466
Q.366		Method 1: 10.775 min; 328
Q.367	$\begin{array}{c c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & &$	Method 1: 10.377 min; 314
Q.368		Method 1: 11.191 min; 312
Q.369		Mp 120-121° C.
Q.370		Method 1: 11.282 min; 423

TABLE Q-continued

		LC-Method: R_t (min); MS-ESI $(m/z; (M + H)^+)$
Q.371	$\begin{array}{c} -\text{O} \\ \text{O} \\ \text{Br} \end{array}$	Method 1: 11.875 min; 272
Q.372		Method 1: 10.334 min; 344
Q.373		Method 1: 10.676 min; 358
Q.374		Method 1: 11.096 min; 372
Q.375	$\begin{array}{c} F \\ \hline \\ O \\ \hline \\ Br \end{array}$	Method 1: 11.418 min; 390
Q.376		Method 1: 11.717 min; 413

TABLE Q-continued

		LC-Method: R, (min); MS-ESI (m/z; (M + H)*)
Q.377		Method 1: 10.791 min; 358
Q.378	CI N N N N	Method 1: 12.258 min; 452
Q.379	HO N N N N	Mp 168-170° C.
Q.380		Method 1: 12.229 min; 304; Trans
Q.381		Method 1: 12.388 min; 305; Cis
Q.382	N = N $N = N$ $N =$	Method 1: 12.998 min; 368

	TABLE Q-continued	
		LC-Method: R_{r} (min); MS-ESI (m/z; (M + H)*)
Q.383	F O N	Method 6: 0.61 min; 336
Q.384	F O N	Method 6: 0.67 min; 332
Q.385		Method 3: 1.34 min; 338
Q.386		Method 3: 1.34 min; 424
Q.387	$N \longrightarrow N$ $N \longrightarrow N$ $N \longrightarrow N$ $N \longrightarrow N$	Method 6: 0.55 min; 286
Q.388	N = N $N = N$ $N = N$ $N = N$ $N = N$	Method 6: 0.73 min; 314
Q.389	N = N $N = N$ $N = N$ $N = N$ $N = N$	Method 6: 0.79 min; 328
Q.390	N = N $N = N$ $N =$	Method 6: 0.79 min; 328

	TABLE Q-continued	
		LC-Method: R_t (min); MS-ESI $(m/z; (M + H)^+)$
Q.391	$\begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	Method 6: 0.83 min; 342
Q.392	$\begin{array}{c c} & & & \\ & & \\ & & & \\ & &$	Method 6: 0.88 min; 356
Q.393	N = N $N = N$ $N = N$ $N = N$	Method 6: 0.69 min; 312
Q.394	N = N $N = N$ $N = N$ $N = N$	Method 6: 0.76 min; 326
Q.395	F F N N N N	Method 6: 0.79 min; 420
Q.396	F O Br N N N	Method 6: 0.60 min; 350
Q.397	N N N N N N N N N N	Method 6: 0.93 min; 442

		LC-Method: R_t (min); MS-ESI (m/z; (M + H) ⁺)
Q.398	N N N N N N N N N N	Method 6: 0.86 min; 392
Q.399	N = N $N = N$ $N = N$ $N = N$ $N = N$	Method 6: 0.89 min; 390
Q.400	N = N $N = N$ $N = N$ $N = N$	Method 6: 0.83 min; 404
Q.401	N N N N N N N N N N	Method 6: 0.89 min; 404
Q.402	N N N N N N N N N N	Method 6: 0.88 min; 406
Q.403		Method 6: 0.99 min; 369

TABLE Q-continued

	TABLE Q-continued	
		LC-Method: $R_r \text{(min)};$ MS-ESI (m/z; (M + H)^+)
Q.404	N N N N N N N N N N	Method 6: 0.92 min; 406
Q.405	r r r r r r r r r r	Method 6: 0.54 min; 334
Q.406	F O N	Method 1: 8.584 min; 396
Q.407	N N N N N N N N N N	Method 1: 12.363 min; 392
Q.408	N N N N N N N N N N N N N N N N N N N	Method 1: 12.632 min; 319; Trans
Q.409		Method 1: 12.533 min; 319; Cis

TABLE Q-continued

	TABLE Q-continued	
		LC-Method: R_{ℓ} (min); MS-ESI (m/z; (M + H) ⁺)
Q.410		Method 1: 11.796 min; 304
Q.411		Method 1: 12.661 min; 318
Q.412	r r r r r r r r r r	Method 1: 14.132 min; 348
Q.413		Method 1: 14.531 min; 362
Q.414		Method 1: 12.019 min; 304
Q.415	N N N N N N N N N N N N N N N N N N N	Mp 81-83° C.

		LC-Method: R_t (min); MS-ESI (m/z; (M + H)*)
Q.416	N N N N N N N N N N N N N N N N N N N	Method 1: 14.621 min; 410
Q.417	$\bigcup_{\mathrm{Br}}^{\mathrm{N}} \bigcup_{\mathrm{N}}^{\mathrm{N}}$	Method 1: 15.162 min; 404
Q.418		Method 1: 14.413 min; 340
Q.419		Method 1: 13.860 min; 326
Q.420		Method 1: 13.191 min; 418
Q.421		Method 1: 12.542 min; 354

		LC-Method: R _t (min); MS-ESI (m/z; (M + H) ⁺)
Q.422		Мр 61-63° С.
Q.423		Method 1: 12.785 min; 340
Q.424		Method 1: 12.041 min; 326
Q.425	$\begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	Method 1: 13.378 min; 418
Q.426	$\begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	Method 1: 13.958 min; 432

		LC-Method: R_r (min); MS-ESI (m/z; (M + H) ⁺)
Q.427		Method 1: 8.845 min; 374
Q.428	$\begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	Method 1: 13.142 min; 370
Q.429		Method 1: 10.416 min; 358
Q.430	$\bigcup_{N = S} O \bigcup_{N = S} N \bigcup_{N = S} N$	Mp 122-124° C.
Q.431		Method 1: 10.943 min; 310
Q.432		Method 1: 11.341 min; 324

TABLE Q-continued

	TABLE Q-continued	
		LC-Method: R_r (min); MS-ESI (m/z; (M + H) ⁺)
Q.433	N N N N N N N N N N	Method 1: 12.746 min; 356
Q.434		Method 1: 10.964 min; 278
Q.435		Method 1: 10.497 min; 264
Q.436	$\begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	Method 1: 12.277 min; 390
Q.437	N N N N N N N N N N	Method 1: 12.606 min; 368
Q.438		Method 1: 9.727 min; 370
Q.439	$\begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	Method 1: 12.860 min; 404

		LC-Method: R_t (min); MS-ESI (m/z; (M + H) ⁺)
Q.440		Method 1: 10.054 min; 262
Q.441		Method 1: 12.781 min; 276
Q.442		Method 1: 13.922 min; 326
Q.443		Method 1: 12.141 min; 342
Q.444	N N N N N N N N N N	Method 1: 12.715 min; 356
Q.445		Method 1: 11.909 min; 412
Q.446	$\bigcup_{O} \bigvee_{N} \bigvee_{N} \bigvee_{N}$	Method 1: 9.174 min; 356

TABLE Q-continued

	TABLE Q-continued	
		LC-Method: R_r (min); MS-ESI $(m/z; (M + H)^+)$
Q.447	O N	Method 1: 9.174 min; 356
Q.448	$\bigcup_{\mathrm{Br}}^{\mathrm{N}} \bigvee_{\mathrm{N}}^{\mathrm{N}}$	Mp 106-107° C.
Q.449	N N N N N N N N N N	Method 1: 12.070 min; 354
Q.450	N N N N N N N N N N	Method 1: 12.652 min; 368
Q.451		Method 1: 10.212 min; 385
Q.452		Method 1: 11.435 min; 324
Q.453		Method 1: 11.704 min; 338

15

TABLE Q-continued

Q.454
$$\begin{array}{c} \text{LC-Method:} \\ R_r(\min); \\ MS-ESI \\ (m/z; (M+H)^+) \end{array}$$

Biological Examples

Blumeria graminis f. sp. tritici (Erysiphe graminis f. sp. tritici)/Wheat/Leaf Disc Preventative (Powdery Mildew on Wheat)

Wheat leaf segments cv. Kanzler were placed on agar in a multiwell plate (24-well format) and sprayed with the formulated test compound diluted in water. The leaf disks were inoculated by shaking powdery mildew infected plants above the test plates 1 day after application. The inoculated leaf disks were incubated at 20° C. and 60% rh under a light regime of 24 h darkness followed by 12 h light/12 h darkness in a climate chamber and the activity of a compound was assessed as percent disease control compared to untreated when an appropriate level of disease damage appears on untreated check leaf segments (6-8 days after application).

The following compounds gave at 200 ppm give at least 50% disease control in this test when compared to untreated 35 control leaf disks under the same conditions, which show extensive disease development:

Q.001, Q.004, Q.005, Q.006, Q.007, Q.010, Q.011, Q.012, Q.013, Q.014, Q.015, Q.016, Q.017, Q.018, Q.019, Q.020, Q.021, Q.022, Q.023, Q.024, Q.025, Q.026, Q.027, Q.028, 40 Q.029, Q.030, Q.031, Q.032, Q.033, Q.034, Q.035, Q.036, Q.037, Q.038, Q.039, Q.040, Q.041, Q.042, Q.043, Q.044, Q.045, Q.046, Q.047, Q.048, Q.049, Q.050, Q.051, Q.052, Q.053, Q.054, Q.055, Q.057, Q.058, Q.059, Q.060, Q.062, Q.063, Q.064, Q.065, Q.066, Q.067, Q.068, Q.069, Q.070, 45 Q.071, Q.072, Q.073, Q.074, Q.075, Q.076, Q.077, Q.078, Q.079, Q.080, Q.081, Q.082, Q.084, Q.085, Q.086, Q.087, Q.088, Q.089, Q.090, Q.091, Q.092, Q.093, Q.094, Q.095, Q.097, Q.098, Q.099, Q.100, Q.101, Q.102, Q.103, Q.104, Q.105, Q.106, Q.108, Q.109, Q.110, Q.111, Q.112, Q.113, 50 Q.114, Q.115, Q.116, Q.117, Q.118, Q.119, Q.120, Q.121, Q.122, Q.123, Q.124, Q.125, Q.126, Q.127, Q.128, Q.129, Q.130, Q.131, Q.132, Q.133, Q.134, Q.135, Q.136, Q.140, Q.141, Q.142, Q.143, Q.144, Q.145, Q.146, Q.147, Q.148, Q.149, Q.151, Q.152, Q.153, Q.154, Q.155, Q.156, Q.158, 55 Q.160, Q.161, Q.162, Q.163, Q.164, Q.165, Q.166, Q.167, Q.168, Q.170, Q.171, Q.172, Q.174, Q.175, Q.176, Q.177, Q.178, Q.179, Q.180, Q.181, Q.183, Q.184, Q.185, Q.186, Q.187, Q.188, Q.191, Q.192, Q.193, Q.195, Q.196, Q.197, $Q.198,\,Q.199,\,Q.200,\,Q.201,\,Q.202,\,Q.203,\,Q.204,\,Q.205,\ \ {\it 60}$ Q.206, Q.207, Q.208, Q.209, Q.211, Q.212, Q.213, Q.214, Q.215, Q.216, Q.217, Q.218, Q.219, Q.220, Q.221, Q.222, Q.223, Q.224, Q.225, Q.226, Q.227, Q.228, Q.229, Q.230, Q.231, Q.233, Q.235, Q.238, Q.239, Q.240, Q.241, Q.242, Q.243, Q.244, Q.245, Q.246, Q.247, Q.248, Q.249, Q.250, 65 Q.251, Q.255, Q.256, Q.260, Q.261, Q.262, Q.263, Q.265, Q.267, Q.269, Q.270, Q.271, Q.272, Q.273, Q.274, Q.275,

Q.276, Q.277, Q.278, Q.280, Q.281, Q.282, Q.283, Q.284, Q.285, Q.286, Q.287, Q.288, Q.289, Q.290, Q.291, Q.292, Q.293, Q.294, Q.296, Q.297, Q.298, Q.299, Q.300, Q.301, Q.302, Q.303, Q.304, Q.305, Q.306, Q.307, Q.308, Q.309, Q.310, Q.312, Q.315, Q.316, Q.317, Q.318, Q.319, Q.320, Q.321, Q.322, Q.323, Q.324, Q.325, Q.326, Q.327, Q.329, Q.330, Q.331, Q.332, Q.333, Q.334, Q.335, Q.336, Q.337, Q.338, Q.339, Q.340, Q.341, Q.342, Q.343, Q.344, Q.345, Q.346, Q.347, Q.349, Q.350, Q.351, Q.352, Q.353, Q.354, Q.355, Q.356, Q.357, Q.358, Q.359, Q.360, Q.361, Q.364, Q.365, Q.367, Q.368, Q.369, Q.370, Q.371, Q.373, Q.374, Q.375, Q.376, Q.378, Q.380, Q.381, Q.382, Q.383, Q.384, Q.385, Q.386, Q.388, Q.389, Q.390, Q.391, Q.392, Q.393, Q.394, Q.397, Q.397, Q.398, Q.400, Q.401

Puccinia recondita f. sp. tritici/Wheat/Leaf Disc Preventative (Brown Rust)

Wheat leaf segments cv. Kanzler were placed on agar in multiwell plates (24-well format) and sprayed with the formulated test compound diluted in water. The leaf disks were inoculated with a spore suspension of the fungus 1 day after application. The inoculated leaf segments were incubated at 19° C. and 75% rh under a light regime of 12 h light/12 h darkness in a climate cabinet and the activity of a compound was assessed as percent disease control compared to untreated when an appropriate level of disease damage appears in untreated check leaf segments (7-9 days after application).

The following compounds gave at 200 ppm gave at least 50% disease control in this test when compared to untreated control leaf disks under the same conditions, which show extensive disease development:

Q.001, Q.002, Q.003, Q.004, Q.005, Q.006, Q.007, Q.008, Q.009, Q.010, Q.011, Q.012, Q.013, Q.014, Q.015, Q.016, Q.017, Q.018, Q.019, Q.020, Q.021, Q.022, Q.023, Q.024, Q.025, Q.026, Q.027, Q.028, Q.029, Q.030, Q.031, Q.032, Q.033, Q.034, Q.035, Q.036, Q.037, Q.038, Q.039, Q.040, Q.041, Q.042, Q.043, Q.044, Q.045, Q.046, Q.047, Q.048, Q.049, Q.050, Q.051, Q.052, Q.053, Q.054, Q.055, Q.056, Q.057, Q.058, Q.059, Q.060, Q.061, Q.062, Q.063, Q.064, Q.065, Q.066, Q.067, Q.068, Q.069, Q.070, Q.071, Q.072, Q.073, Q.074, Q.075, Q.076, Q.077, Q.078, Q.079, Q.080, Q.081, Q.082, Q.083, Q.084, Q.085, Q.086, Q.087, Q.088, Q.089, Q.090, Q.091, Q.092, Q.093, Q.094, Q.095, Q.096, Q.097, Q.098, Q.099, Q.100, Q.101, Q.102, Q.103, Q.104, Q.105, Q.106, Q.107, Q.108, Q.109, Q.110, Q.111, Q.112, Q.113, Q.114, Q.115, Q.116, Q.117, Q.118, Q.119, Q.120, Q.121, Q.122, Q.123, Q.124, Q.125, Q.126, Q.127, Q.128, Q.129, Q.130, Q.131, Q.132, Q.133, Q.134, Q.135, Q.136, Q.137, Q.138, Q.140, Q.141, Q.142, Q.143, Q.144, Q.145, Q.146, Q.147, Q.148, Q.149, Q.150, Q.151, Q.152, Q.153, Q.154, Q.155, Q.156, Q.157, Q.158, Q.159, Q.160, Q.161,

```
Q.162, Q.163, Q.164, Q.165, Q.166, Q.167, Q.168, Q.169,
Q.170, Q.171, Q.172, Q.173, Q.174, Q.175, Q.176, Q.177,
Q.178, Q.179, Q.180, Q.181, Q.182, Q.183, Q.184, Q.185,
Q.186, Q.187, Q.188, Q.189, Q.190, Q.191, Q.192, Q.193,
Q.194, Q.195, Q.196, Q.197, Q.198, Q.199, Q.200, Q.201, 5
Q.202, Q.203, Q.204, Q.205, Q.206, Q.207, Q.208, Q.209,
Q.210, Q.211, Q.212, Q.213, Q.214, Q.215, Q.216, Q.217,
Q.218, Q.219, Q.220, Q.221, Q.222, Q.223, Q.224, Q.225,
Q.226, Q.227, Q.228, Q.229, Q.230, Q.231, Q.232, Q.233,
Q.234, Q.235, Q.236, Q.237, Q.238, Q.239, Q.240, Q.241,
Q.242, Q.243, Q.244, Q.245, Q.246, Q.247, Q.248, Q.249,
Q.250, Q.251, Q.252, Q.253, Q.254, Q.255, Q.256, Q.257,
Q.258, Q.259, Q.260, Q.261, Q.262, Q.263, Q.264, Q.265,
Q.266, Q.267, Q.268, Q.269, Q.270, Q.271, Q.272, Q.273,
Q.274, Q.275, Q.276, Q.277, Q.278, Q.279, Q.280, Q.281, 15
Q.282, Q.283, Q.284, Q.285, Q.286, Q.287, Q.288, Q.289,
Q.290, Q.291, Q.292, Q.293, Q.294, Q.295, Q.296, Q.297,
Q.298, Q.299, Q.300, Q.301, Q.302, Q.303, Q.304, Q.305,
Q.306, Q.307, Q.308, Q.309, Q.310, Q.311, Q.312, Q.313,
Q.314, Q.315, Q.316, Q.317, Q.318, Q.319, Q.320, Q.321, 20
Q.322, Q.323, Q.324, Q.325, Q.326, Q.327, Q.328, Q.329,
Q.330, Q.331, Q.332, Q.333, Q.334, Q.335, Q.336, Q.337,
Q.338, Q.339, Q.340, Q.341, Q.342, Q.343, Q.344, Q.345,
Q.346, Q.347, Q.348, Q.349, Q.350, Q.351, Q.352, Q.353,
Q.354, Q.355, Q.356, Q.357, Q.358, Q.359, Q.360, Q.361, 25
Q.362, Q.363, Q.364, Q.365, Q.366, Q.367, Q.368, Q.369,
Q.370, Q.371, Q.372, Q.373, Q.374, Q.375, Q.376, Q.377,
Q.378, Q.379, Q.380, Q.381, Q.382, Q.383, Q.384, Q.385,
Q.386, Q.387, Q.388, Q.389, Q.390, Q.391, Q.392, Q.393,
Q.394, Q.397, Q.398, Q.400, Q.401
```

Puccinia recondita f. sp. tritici/Wheat/Leaf Disc Curative (Brown Rust)

Wheat leaf segments cv. Kanzler are placed on agar in multiwell plates (24-well format). The leaf segments are inoculated with a spore suspension of the fungus. Plates were 35 stored in darkness at 19° C. and 75% rh. The formulated test compound diluted in water was applied 1 day after inoculation. The leaf segments were incubated at 19° C. and 75% rh under a light regime of 12 h light/12 h darkness in a climate cabinet and the activity of a compound was assessed as percent disease control compared to untreated when an appropriate level of disease damage appears in untreated check leaf segments (6-8 days after application).

The following compounds gave at 200 ppm gaive at least 50% disease control in this test when compared to untreated 45 control leaf disks under the same conditions, which show extensive disease development:

```
Q.001, Q.004, Q.005, Q.006, Q.007, Q.010, Q.011, Q.012,
Q.013, Q.014, Q.015, Q.016, Q.018, Q.019, Q.020, Q.021,
Q.022, Q.023, Q.024, Q.025, Q.026, Q.027, Q.028, Q.029, 50
Q.030, Q.031, Q.032, Q.033, Q.034, Q.035, Q.036, Q.037,
Q.038, Q.039, Q.040, Q.041, Q.042, Q.043, Q.044, Q.045,
Q.046, Q.047, Q.048, Q.049, Q.050, Q.051, Q.052, Q.053,
Q.054, Q.055, Q.057, Q.058, Q.059, Q.060, Q.062, Q.063,
Q.064, Q.065, Q.066, Q.067, Q.068, Q.069, Q.070, Q.071, 55
Q.072, Q.073, Q.074, Q.075, Q.076, Q.077, Q.078, Q.079,
Q.080, Q.081, Q.082, Q.084, Q.085, Q.086, Q.087, Q.088,
Q.089, Q.090, Q.091, Q.092, Q.093, Q.094, Q.095, Q.096,
Q.097, Q.098, Q.099, Q.100, Q.101, Q.102, Q.103, Q.104,
Q.105, Q.106, Q.109, Q.110, Q.111, Q.112, Q.113, Q.114, 60
Q.115, Q.116, Q.117, Q.118, Q.119, Q.120, Q.121, Q.122,
Q.123, Q.124, Q.126, Q.127, Q.128, Q.129, Q.130, Q.131,
Q.132, Q.133, Q.134, Q.135, Q.136, Q.140, Q.141, Q.143,
Q.144, Q.145, Q.146, Q.147, Q.148, Q.149, Q.151, Q.152,
Q.153, Q.154, Q.155, Q.156, Q.158, Q.159, Q.160, Q.161, 65
Q.162, Q.163, Q.164, Q.165, Q.166, Q.167, Q.168, Q.169,
Q.170, Q.171, Q.172, Q.174, Q.175, Q.176, Q.177, Q.178,
```

```
Q.179, Q.180, Q.181, Q.182, Q.183, Q.184, Q.185, Q.186,
Q.188, Q.191, Q.192, Q.193, Q.194, Q.195, Q.196, Q.197,
Q.198, Q.199, Q.200, Q.201, Q.203, Q.204, Q.205, Q.206,
Q.207, Q.208, Q.209, Q.211, Q.212, Q.213, Q.214, Q.215,
Q.216, Q.217, Q.218, Q.219, Q.220, Q.221, Q.222, Q.223,
Q.224, Q.225, Q.226, Q.227, Q.228, Q.229, Q.230, Q.231,
Q.232, Q.233, Q.235, Q.236, Q.238, Q.239, Q.240, Q.241,
Q.242, Q.243, Q.244, Q.246, Q.247, Q.248, Q.249, Q.250,
Q.251, Q.253, Q.254, Q.255, Q.256, Q.257, Q.258, Q.260,
Q.261, Q.262, Q.263, Q.265, Q.269, Q.270, Q.271, Q.273,
Q.274, Q.275, Q.276, Q.277, Q.278, Q.279, Q.280, Q.281,
Q.282, Q.283, Q.284, Q.285, Q.286, Q.287, Q.288, Q.289,
Q.290, Q.291, Q.292, Q.293, Q.294, Q.296, Q.297, Q.298,
Q.299, Q.300, Q.301, Q.302, Q.303, Q.304, Q.305, Q.306,
Q.307, Q.308, Q.309, Q.310, Q.311, Q.315, Q.316, Q.317,
Q.318, Q.319, Q.320, Q.321, Q.322, Q.323, Q.324, Q.325,
Q.326, Q.327, Q.329, Q.330, Q.331, Q.332, Q.333, Q.334,
Q.335, Q.336, Q.337, Q.338, Q.339, Q.340, Q.341, Q.342,
Q.344, Q.345, Q.346, Q.347, Q.348, Q.349, Q.350, Q.351,
Q.352, Q.353, Q.354, Q.355, Q.356, Q.357, Q.358, Q.359,
Q.360, Q.361, Q.362, Q.363, Q.364, Q.365, Q.366, Q.367,
Q.368, Q.369, Q.370, Q.371, Q.372, Q.373, Q.374, Q.375,
Q.376, Q.377, Q.378, Q.380, Q.381, Q.382, Q.383, Q.384,
Q.385, Q.386, Q.388, Q.389, Q.390, Q.391, Q.392, Q.393,
Q.394, Q.397, Q.398, Q.400, Q.401
```

Pyrenophora teres/Barley/Leaf Disc Preventative (Net Blotch)

Barley leaf segments cv. Hasso were placed on agar in a multiwell plate (24-well format) and sprayed with the formulated test compound diluted in water. The leaf segments were inoculated with a spore suspension of the fungus 2 days after application. The inoculated leaf segments were incubated at 20° C. and 65% rh under a light regime of 12 h light/12 h darkness in a climate cabinet and the activity of a compound was assessed as disease control compared to untreated when an appropriate level of disease damage appears in untreated check leaf segments (5-7 days after application).

The following compounds gave at 200 ppm give at least 50% disease control in this test when compared to untreated control leaf disks under the same conditions, which show extensive disease development:

```
Q.001, Q.004, Q.005, Q.007, Q.011, Q.012, Q.013, Q.014,
Q.015, Q.016, Q.018, Q.019, Q.020, Q.021, Q.022, Q.023,
Q.024, Q.025, Q.026, Q.027, Q.028, Q.029, Q.032, Q.033,
Q.034, Q.035, Q.038, Q.039, Q.041, Q.042, Q.043, Q.044,
Q.046, Q.047, Q.052, Q.053, Q.054, Q.055, Q.057, Q.059,
Q.062, Q.063, Q.066, Q.067, Q.069, Q.070, Q.071, Q.074,
Q.075, Q.076, Q.079, Q.082, Q.086, Q.087, Q.088, Q.089,
Q.090, Q.091, Q.093, Q.095, Q.097, Q.099, Q.100, Q.101,
Q.102, Q.103, Q.105, Q.106, Q.110, Q.111, Q.113, Q.115,
Q.116, Q.117, Q.118, Q.119, Q.120, Q.121, Q.122, Q.124,
Q.125, Q.127, Q.128, Q.129, Q.131, Q.133, Q.136, Q.141,
Q.143, Q.144, Q.146, Q.148, Q.153, Q.154, Q.155, Q.158,
Q.160, Q.161, Q.162, Q.163, Q.164, Q.166, Q.167, Q.168,
Q.169, Q.170, Q.174, Q.175, Q.176, Q.178, Q.180, Q.183,
Q.184, Q.186, Q.191, Q.193, Q.195, Q.196, Q.197, Q.198,
Q.199, Q.200, Q.201, Q.202, Q.203, Q.204, Q.206, Q.207,
Q.208, Q.209, Q.211, Q.212, Q.214, Q.215, Q.216, Q.217,
Q.218, Q.219, Q.220, Q.221, Q.222, Q.223, Q.224, Q.225,
Q.226, Q.227, Q.228, Q.229, Q.231, Q.232, Q.233, Q.235,
Q.236, Q.237, Q.238, Q.240, Q.241, Q.242, Q.243, Q.244,
Q.245, Q.246, Q.247, Q.248, Q.249, Q.250, Q.251, Q.252,
Q.253, Q.255, Q.256, Q.260, Q.261, Q.262, Q.269, Q.275,
Q.277, Q.278, Q.280, Q.282, Q.284, Q.285, Q.286, Q.289,
Q.291, Q.292, Q.293, Q.298, Q.299, Q.301, Q.302, Q.304,
Q.308, Q.311, Q.315, Q.316, Q.320, Q.322, Q.324, Q.326,
Q.329, Q.334, Q.335, Q.336, Q.337, Q.340, Q.344, Q.346,
Q.349, Q.352, Q.353, Q.354, Q.355, Q.357, Q.358, Q.361,
```

0.0625

0.0625

0.0625

0.0625

0.03125

0.03125

0.03125

Q.135

rate ppm

0.625

0.3125

50 50

50

50

0

0

S?

100

90

100

100

100

50

20

Activity

(%)

50

0

1.25

0.625

0.3125

0.15625

1.25

0.625

0.3125

2,4-D

rate ppm

Q.363, Q.364, Q.366, Q.370, Q.371, Q.375, Q.376, Q.377, Q.378, Q.380, Q.382, Q.386, Q.389, Q.390, Q.391, Q.392, Q.393, Q.394, Q.398, Q.400

In the following Tables 'Activity (%)' means the assessed experimental activity (% disease control in this test when 5 compared to untreated control leaf disks under the same conditions, which show extensive disease development) and "P" is the expected value calculated (expected) activity according to the COLBY formula (see above). The column headed 'S?' indicates whether or not synergy was observed, with 'y' 10 meaning that synergy was observed.

In the following tables, compound (V) is N-[9-(dichloromethylene)-1,2,3,4-tetrahydro-1,4-methanonaphthalen-5-yl]-3-(difluoromethyl)-1-methyl-1H-pyrazole-4-carboxamide, compo N-[1-m 4-carbo phenyl yl-metl

Mon Fusari

Con mixed placing microti the fung 24° C.

rlene)-1,2,3,4-1 lifluoromethyl) npound (VI) is 1-methyl-2-(2, arboxamide, c nyl)-5-(2,4-dif nethanol. Monographella arium nivale), Conidia of the fi ted into nutrien ting a (DMSC)	tetrahydro-1,4-m)-1-methyl-1H-py 3-(difluoromethy 4,6-trichloropher ompound (VII) duoro-phenyl)-isc nivalis (syn. snow mould, foc angus from cryog at broth (PDB pot 5-well format) the	ethanonapl yrazole-4-c yl)-N-meth nyl)ethyl]-l is [3-(4-cl oxazol-4-yl <i>Microdoc</i> ot rot of cer enic storag ato dextros e test com	nthaler arbox oxy-1 IH-pyr nloro-2]-pyric chium reals e were se brot pound	amide, -methyl- razole- 2-fluoro- din-3- nivale, e directly h). After ls into a	20	0.625 0.625 0.625 0.625 0.625 0.3125 Q.135 rate ppm	2.5 1.25 0.625 0.3125 2.5 1.25 0.625 0.3125 0.15625 1.25 Azoxystrobin rate ppm	0 0 0 0 100 90 90 90 100 20 Activity (%)	50 50 50 50 50 0	y y y y y y
fungal spores w C. and activity	vas added. The test v was determined Compound (V)	st plates we l visually a: Activity	re incu fter 72	ibated at hrs		0.0625 0.125 0.0625 0.0625	0.00625 0.003125 0.0015625 0.003125 0.00625 0.0015625	0 70 20 0 90 100 20	70 70 0	y y y
0.0625	rate ppm	20	P	S?	_	Q.135 rate ppm	Fenpropimorph rate ppm	Activity (%)	P	S?
0.03125 0.015625 0.0078125 0.003125 0.03125 0.03125 0.015625 0.015625 0.0078125	0.0625 0.03125 0.03125 0.03125 0.0625 0.03125 0.0625 0.03125	0 0 0 50 0 50 50 50 70 20 70	20 0 50 0 50 0	у у у у у	35	0.03125 0.03125 0.03125 0.03125 0.03125 0.03125	0.125 0.0625 0.03125 0.015625 0.0078125 0.125 0.0625 0.03125 0.015625 0.0078125	20 0 0 0 0 0 100 90 90 70	20 20 20 20 20 20	y y y y
Q.135 rate ppm	Metconazole rate ppm	Activity (%)	P	S?	45	Q.135 rate ppm	Bicyclopyrone rate ppm	Activity (%)	P	S?
0.0625 0.03125 0.0625 0.0625 0.0625	0.25 0.125 0.0625 0.03125 0.015625 0.25 0.125 0.0625	70 0 0 0 0 0 0 0 100 100	70 70 70	у у у	50	0.0625 0.03125 0.0625 0.03125 0.0625	0.3125 0.15625 0.078125 0.15625 0.078125 0.3125	20 0 0 0 0 0 90 20 70	20 0 20	y y y
0.0625 0.0625 0.03125 0.03125	0.03125 0.015625 0.125 0.0625	100 100 100 70	70 70 0 0	y y y y	55	Q.135 rate ppm	Abamectin rate ppm	Activity (%)	P	S?
0.03125 0.03125 Q.135 rate ppm	0.03125 0.015625 cis- Jasmone rate ppm	50 20 Activity (%)	0 0	y y S?	60	0.0625	2.5 1.25 0.625 0.3125	20 0 0 0 0		
0.0625 0.03125	1.25 0.625 0.3125 0.15625	50 0 0 0 0 0		·	65	0.0625 0.0625 0.0625 0.0625 0.0625	0.15625 0.15625 0.3125 0.625 1.25 2.5	0 70 50 20 50 100	20 20 20 20 20 20	y y y y

	-continued						-continued				
Q.135 rate ppm	Thiamethoxam rate ppm	Activity (%)	P	S?		0.0625 0.03125	0.15625 1.25	90 20	50 0	y y	
0.125 0.0625	5	70 20			5	Q.135 rate ppm	Paclobutrazol rate ppm	Activity (%)	P	S?	
0.125 0.125 0.0625 0.125 0.125 0.125 0.0625	5 2.5 0.625 0.3125 0.3125 0.625 0.3125 0.25 0.5 0.25	0 0 0 0 100 90 50 90 100 70	70 70 20 70 70 20	y y y y y	10	0.0625 0.03125 0.015625 0.0625 0.0625 0.0625	1.25 0.625 0.3125 0.15625 1.25 0.625 0.3125	70 0 0 0 0 0 0 0 0 100 100	70 70 70 70	y y y	
Q.135 rate ppm	Propiconazole rate ppm	Activity (%)	P	S?	15	0.0625 0.03125	0.15625 1.25	100 100 100	70 0	y y	
0.0625 0.03125	0.25 0.125	70 0 0 0			20	0.03125 0.03125 0.03125 0.015625	0.625 0.3125 0.15625 0.625	50 20 20	0 0 0 0	y y y y	
	0.0625 0.03125 0.015625	0 0				Q.135 rate ppm	Pyraclostrobin rate ppm	Activity (%)	P	S?	
0.0625 0.0625 0.0625 0.03125 0.03125 0.0625 0.03125 0.0625	0.015625 0.03125 0.0625 0.015625 0.03125 0.125 0.0625 0.25	90 100 100 50 20 100 50	70 70 70 0 0 70 0	y y y y y	25	0.125 0.0625 0.125 0.0625 0.0625	0.003125 0.0015625 0.003125 0.003125 0.0015625	70 0 0 0 90 20 20	70 0 0	y y y	
0.03125	0.125	70	0	y y	30	Q.135 rate ppm	Mandipropamid rate ppm	Activity (%)	P	S?	
Q.135 rate ppm 0.0625 0.03125 0.0625 0.0625	2.5 1.25 0.625 0.3125 0.625	70 0 0 0 0 0 0 0 0 0 70	P 70 70	S?	35	0.125 0.0625 0.03125 0.125 0.125 0.0625 0.03125	0.0625 0.03125 0.0625 0.03125 0.0625 0.0625	70 20 0 0 0 90 90 90 20 50	70 70 20 0	y y y	
0.0625 0.03125 0.0625	1.25 0.625 2.5	90 20 90	70 0 70	y y y	40	Q.135 rate ppm	Carbendazim rate ppm	Activity (%)	P	S?	
Q.135 rate ppm	1.25 Flutriafol rate ppm	Activity (%)	0 P	y S?	- 45	0.125 0.0625	0.0625 0.03125	70 20 0 0			
0.0625	0.25 0.125 0.0625	70 0 0 0			_	0.125 0.0625 0.0625	0.015625 0.0625 0.03125 0.015625	0 90 50 50	70 20 20	y y y	
0.0625 0.0625 0.0625	0.03125 0.25 0.125 0.0625	0 100 90 90	70 70 70	y y y	50	Q.135 rate ppm	Copper hydroxide rate ppm	Activity (%)	P	S?	
Q.135 rate ppm	0.03125 Trinexapacethyl rate ppm	90 Activity (%)	70 P	y S?	- 55	0.125 0.0625	5 2.5	70 20 0 0			
0.0625 0.03125 0.0625 0.0625 0.0625 0.0625	2.5 1.25 0.625 0.3125 0.12625 2.5 1.25 0.625 0.3125	50 0 0 0 0 0 0 0 0 100 90 70	50 50 50 50	y y y y	60	0.125 0.125 0.125 0.0625 0.0625 0.125 0.125	1.25 0.625 0.3125 0.15625 0.3125 0.625 1.25 0.15625 0.3125 2.5	0 0 0 100 100 100 70 70 100	70 70 70 20 20 70	у у у у у у	

690 -continued

007		
-continued		

Q.135 rate ppm 0.0625	Manganese oxide					Continued				
0.0625	rate ppm	Activity (%)	P	S?		Q.113 rate ppm	Metconazole rate ppm	Activity (%)	P	S?
0.0625 0.0625 0.0625 0.0625 0.0625	2.5 1.25 0.625 0.3125 0.15625 0.15625 0.3125 0.625 1.25 2.5	20 0 0 0 0 0 0 70 50 20 70 90	20 20 20 20 20 20	y y y	_ 5 10 _ 15	1 0.5 0.25 0.125 1 1 1 0.5 0.5	1 0.5 0.25 0.125 1 0.5 0.25 1	50 20 0 0 20 0 0 0 100 100 100 100	60 50 50 36 20	у у у у у
Q.135 rate ppm	Mesotrione rate ppm	Activity (%)	P	S?	13	0.5 0.5	0.25 0.125	90 50 100	20 20	у У
0.0625 0.03125	2.5 1.25 0.625 0.3125 0.15625	20 0 0 0 0 0 0			20	0.25 0.25 0.25 0.25 0.125 0.125 0.125	1 0.5 0.25 0.125 0.5 0.25 0.125	70 50 20 50 20 20 20	20 0 0 0 0 0 0	у у у у у у
0.0625 0.0625	0.078125 0.15625 0.3125	0 70 70	20 20	y y	25	Q.113 rate ppm	Penflufen rate ppm	Activity (%)	P	S?
0.0625 0.03125 0.03125 0.03125 0.03125 0.0625 0.03125 0.0625 0.03125	0.625 0.078125 0.15625 0.3125 1.25 0.625 2.5 1.25	70 20 20 0 70 20 90	20 0 0 0 0 20 0 20 0	y y y y y y y	30	1 0.5 0.25 0.125 1 0.5 0.5	1 0.5 1 1 0.5	20 2 2 2 2 20 0 50 50 20	36 20 0	y y y
Q.135 rate ppm	Prothioconazole rate ppm	Activity (%)	P	S?	35	0.25 0.25 0.125	1 0.5 0.5	50 20 20	20 0 0	y y y
0.0625 0.03125	0.0125	70 0 0			_	Q.113 rate ppm	Bixafen rate ppm	Activity (%)	P	S?
0.0625 0.0625 0.0625 0.03125 0.03125 0.0625 0.03125 0.03125	0.0125 0.00625 0.003125 0.0015625 0.0015625 0.003125 0.00625 0.003125 0.0125 0.00625 0.0125	0 0 0 100 100 100 20 20 100 100	70 70 70 0 0 70 0	у у у у у у у	45 —	0.25 0.125 0.0625 0.25 0.125 0.0625 Q.113 rate ppm	0.25 0.25 0.25 0.25 0.25 Fenpropimorph rate ppm	0 0 0 20 50 50 50 50	20 20 20 20	y y y
Q.113 rate ppm	Flutriafol rate ppm	Activity (%)	P	S?	50	0.5 0.25	1	20 0 20		
2 1 0.5 0.25	2 1 0.5 0.25 2	70 20 20 0 0 0 0 0 0	70 70	y y	55	0.5 0.5 0.5 0.5 0.25 0.25 0.25 0.25	0.5 0.25 0.125 0.0625 1 0.5 0.25 0.125 1 0.5 0.25	0 0 0 0 700 100 100 100 100	36 20 20 20 20 0	y y y y y
2 2 2 1	1 0.5 2 1	90 90 70	70 20 20	y y y	60	0.25	0.125 0.0625	20 20	0	y y

	-continued	l				-continued					
0.125	0.0125 0.0125	0 0 90	0			0.0078125 0.00390625	0.003125 0.0015625	50 20	20 0	y y	
0.3 0.25 0.125	0.0125 0.0125 0.0125	50 20	0 0 0	y y y	5	Q.113 rate ppm	Abamectin rate ppm	Activity (%)	P	S?	
Q.113 rate ppm	Propiconazole rate ppm	Activity (%)	P	S?	_	2 1 0.5		70 20 0			
2 1 0.5 0.25	1 0.5 0.25 0.125 0.5	70 20 0 0 20 0 0 0 0	70	у	10	2 1 2 1 1 0.5	20 10 5 10 5 20 10 20 10	50 0 0 100 50 100 50 100 20	70 20 85 20 60	у у у у у	
2 1 1 1	1 0.25 0.5 1	100 90 100 100	76 20 20 36	у у у у	20	Q.113 rate ppm	Mesotrione rate ppm	Activity (%)	50 P	у S?	
0.5 0.5 0.5 0.25 0.25 0.5 0.25 0.25	0.125 0.25 0.5 0.125 0.25 1 0.5 1	20 50 90 20 20 100 50 90	0 0 0 0 0 20 0 20	y y y y y y	20 _	1 0.5 1 1 0.5	5 2.5 2.5 5 2.5	20 0 0 0 0 50 50 20	20 20 0	y y y	
Q.113 rate ppm	Paclobutrazol rate ppm	Activity (%)	P	S?		Q.062 rate ppm	Compound (V) rate ppm	Activity (%)	P	S?	
1 0.5 0.25 0.125	10 5 2.5 1.25 10 5 2.5	50 20 0 0 0 0 0 0 0 100 100 90	50 50 50 20	у у у у	30 —	0.0625 0.03125 0.015625 0.0625 0.03125 0.015625 0.03125 0.015625	0.125 0.0625 0.03125 0.125 0.0625 0.03125 0.125 0.0625	0 0 0 70 50 0 100 70 20 90	70 50 0 70 50	у у у у у	
0.5 0.5 0.5 0.25 0.25	5 2.5 1.25 10 5	70 50 50 50 50	20 20 20 0 0	y y y y	40	Q.062 rate ppm	Compound (VI) rate ppm	Activity (%)	P	S?	
0.25 0.25 0.125 0.125	2.5 1.25 5 2.5	50 20 20 20 20	0 0 0 0	y y y y	45	0.03125 0.015625 0.03125	0.125 0.0625 0.125	0 0 50 0 70	50	у	
Q.113 rate ppm	Azoxystrobin rate ppm	Activity (%)	P	S?		0.03125 0.015625	0.0625 0.0625	20 20	0	y y	
0.25 0.125 0.0625 0.03125		0 0 0			50 -	Q.062 rate ppm	Chlorothalonil rate ppm	Activity (%)	P	S?	
0.25 0.125 0.0625 0.03125	0.00625 0.00625 0.00625 0.00625 0.00625	50 70 70 70 50 100	50 50 50 50	y y	55	0.5 0.25 0.125	0.125 0.0625 0.03125	50 20 0 70 20 0			
Q.113 rate ppm	Cyprodinil rate ppm	Activity (%)	P	S?	- - 60	0.25 0.5 0.125	0.03123 0.0625 0.125 0.0625	50 100 50	36 85 20	у у у	
0.015625 0.0078125 0.00390625		0 0 0			_	0.125 Q.062	0.03125 Flutriafol	20 Activity	0	У	
0.015625 0.0078125	0.003125 0.0015625 0.003125 0.0015625	20 0 50 20	20 0	y y	65	0.5 0.25	rate ppm	50 20	P	S?	

	-continued	i					-continued			
0.125	0.5	0 0				Q.062 rate ppm	Fenpropimorph rate ppm	Activity (%)	P	S?
0.5 0.5 0.5 0.25 0.25 0.25 0.125 0.125 0.125 0.125	0.25 0.125 0.0625 0.5 0.25 0.125 0.5 0.25 0.125 0.0625 0.5 0.625 0.5 0.625	0 0 0 90 90 90 50 50 50 20 20 20	50 50 50 20 20 20 20 0 0	y y y y y y y y	10	2 1 2 2 2 2 1 1 1 1	2 1 0.5 0.25 2 1 0.5 2 1 0.5 0.25	20 0 20 0 0 0 0 100 90 70 70 50 20	36 20 20 20 0 0	y y y y y y
Q.062 rate ppm	Paclobutrazol rate ppm	Activity (%)	P	S?	-	Q.062 rate ppm	Abamectin rate ppm	Activity (%)	P	S?
0.5 0.25 0.125	10 5 2.5 1.25 0.625	70 20 0 0 0 0 0 0	70		20	1 0.5 1 1 1 0.5 0.5	20 10 5 5 10 20 10 20	70 50 50 0 0 90 100 100 70	70 70 85 50 75	у у у у у
0.5 0.5 0.5	5 2.5 1.25	100 100	70 70	y y y		Q.062 rate ppm	Propiconazole rate ppm	Activity (%)	P	S?
0.25 0.25 0.25 0.25 0.25 0.125 0.125 0.125 0.125	10 5 2.5 1.25 0.625 5 2.5 1.25 0.625	100 70 y 100 20 y 100 20 y 90 20 y 70 20 y 70 20 y 70 0 y 70 0 y 50 0 y 20 y Activity	35	0.5 0.25 0.125 0.0625 0.5 0.5 0.5 0.25	1 0.5 0.25 0.125 0.0625 0.125 0.25 0.5 0.125	50 20 0 0 20 0 0 0 0 0 70 100 100 50	50 50 50 20	у у у у		
0.25	rate ppm	(%)	P	S?	4 0	0.25 0.25 0.5 0.125	0.25 1 0.0625	70 100 20	20 60 0	y y
0.25 0.25 0.25	5 2.5 1.25 0.625 5 2.5	0 0 0 0 0 0 0 50	20 20	y y	45	0.125 0.25 0.125 0.0625 0.25 0.125 0.0625 0.125 0.0625	0.1025 0.125 0.5 0.25 0.125 1 0.5 0.25	20 100 50 20 100 70 20	0 20 0 0 0 36 0	y y y y y y
0.25 0.25 0.125	1.25 0.625 5	50 50 50	20 20 0	y y y	50	Q.062 rate ppm	Metconazole rate ppm	Activity (%)	P	S?
0.125 0.125	2.5 1.25	50 50	0 0	y y	_	0.5 0.25 0.125		50 20 0		
Q.062 rate ppm	Penflufen rate ppm	Activity (%)	P	S?	55	0.0625	1 0.5	0 20 0		
2 1 0.5 0.25 2 1 0.5 0.25	1 0.5 1 0.5 1 0.5	20 0 0 0 20 0 50 20 50 20	36 0 20 0	y y y y	60	0.5 0.5 0.5 0.5 0.25 0.25 0.25 0.25 0.25	0.25 0.125 0.0625 1 0.5 0.25 0.125 1 0.5 0.25 0.125 0.25 0.125	0 0 0 100 100 70 100 100 100 90 20 50	60 50 50 50 36 20 20 20	y y y y y y

	695						696			
	-continued	l					-continu	ed		
0.125 0.125 0.125 0.0625	0.5 0.25 0.125 0.25	90 50 20 20	0 0 0	y y y y	5	0.0625 0.5 0.25 0.125	0.0125 0.0125 0.0125 0.0125	0 0 100 100 50	50 20 0	y y y
Q.062 rate ppm	Trinexapacethyl rate ppm	Activity (%)	P	S?		0.0625	0.0125	20	0	у
0.5 0.25		70 20			10	Q.062 rate ppm	Glufosinate rate ppm	Activity (%)	P	S?
0.125 0.5 0.5 0.5 0.25	5 2.5 1.25 0.625 5 2.5 1.25 5	0 0 0 0 0 90 90 90 50	70 70 70 70 20	y y y y	15	0.125 0.125 0.125 0.125	5 2.5 1.25 1.25 2.5 5	0 0 0 0 20 20 20	0 0	y y y
0.25 0.25 0.125 0.125	1.25 0.625 5 2.5	50 50 20 20	20 20 0 0	y y y y	20	Conidia of the mixed into nutri	ea (Gray mould) fungus from cryc ent broth (PDB p	otato dextro	ose bro	oth). After
Q.062 rate ppm	2,4-D rate ppm	Activity (%)	P	S?		microtiter plate (SO) solution of t 96-well format) the was added. The t	ne nutrient	broth c	containing
0.5 0.25 0.125		70 20 0			25	24° C. and the a				
	10 5 2.5 1.25	0 0 0 0				Q.135 rate ppm	Fluxapyroxad rate ppm	Activity (%)	P	S?
0.5 0.5 0.5 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.125 0.125 0.125	0.625 10 5 2.5 1.25 10 5 2.5 1.25 0.625 5 2.5 1.25	90 90 90 90 90 50 50 50 50 20 20	70 70 70 70 20 20 20 20 20 0 0	y y y y y y y y y	30 35	0.03125 0.015625 0.0078125 0.00390625 0.03125 0.015625 0.0078125 0.00390625 0.015625	0.0625 0.03125 0.015625 0.0078125 0.0625 0.03125 0.015625 0.0078125 0.0625	0 0 0 0 50 20 20 0 70 50 50	50 20 20 0 50	y y y y
Q.062 rate ppm	Pyraclostrobin rate ppm	Activity (%)	P	S?	~	0.0078125 0.00390625	0.03125 0.015625	50 50	20 20	y y
0.0625 0.03125		0			- 45	Q.135 rate ppm	Compound (V) rate ppm	Activity (%)	P	S?
0.015625 0.0625 0.03125 0.03125 0.015625	0.0125 0.00625 0.0125 0.0125 0.00625 0.00625	0 50 0 70 70 20 20	50 50 0	y y y y	50	0.03125 0.015625 0.0078125	0.125 0.0625 0.03125 0.015625 0.03125	0 0 70 70 50 20	50	у
Q.062 rate ppm	Mesotrione rate ppm	Activity (%)	P	S?	_	0.0078125 0.03125 0.015625	0.015625 0.125 0.0625	50 90 70	20 70 70	y y
1	20 10 5	70 0 0 0			55	Q.135 rate ppm	0.03125 Flutriafol rate ppm	Activity (%)	50 P	у S?
1 1 1	5 10 20	90 90 90	70 70 70	y y y	6 0	1 0.5 0.25		50 20 0		
Q.062 rate ppm	Prothioconazole rate ppm	Activity (%)	P	S?	_	0.125	1 0.5 0.25	0 0 0 0		
0.5 0.25 0.125		50 20 0			65	1 1	0.23 0.125 1 0.5	0 100 100	50 50	y y

	697 -continu	ed					698 -continu	ed		
1 0.5	0.25 1	100 90	50 20	y y		Q.135 rate ppm	Picoxystrobin rate ppm	Activity (%)	P	S?
0.5 0.5 0.5 0.25 0.25 0.25 0.25 0.25	0.5 0.25 0.125 1 0.5 0.25 0.125 0.5	90 90 70 70 50 50 50 20	20 20 20 0 0 0 0	y y y y y y	5	1 0.5 0.25 0.125	2 1 0.5 0.25	20 0 0 0 50 50 50 50		
Q.135 rate ppm	Metconazole rate ppm	Activity (%)	P	S?	_	1 1 1	2 1 0.5	90 90 90	60 60 60	у у у
0.125 0.0625 0.03125 0.125 0.0625 0.0625	0.03125 0.015625 0.03125 0.03125 0.015625	0 0 0 0 0 70 50 20	0 0 0 0	y y y	15	0.5 0.5 0.5 0.5 0.25 0.25 0.25 0.125	2 1 0.5 0.25 1 0.58 0.25 0.5	90 70 70 70 70 70 70 70 70	50 50 50 50 50 50 50 50 50 50	y y y y y y
0.03125 Q.135	0.03125 cis- Jasmone	Activity		у		0.125 Q.135 rate ppm	0.25 Fenpropimorph rate ppm	Activity (%)	90 P	y S?
1 0.5 0.25	rate ppm	(%) 50 20 0	P	S?	25	1 0.5 0.25 0.125		50 20 0 0		
1 1 0.5 0.5 0.25 0.25	5 2.5 1.25 0.625 5 2.5 2.5 1.25 1.25 0.625	0 0 0 0 90 90 50 50 20	50 50 20 20 0	y y y y y	30	0.0625 1 0.5 0.5 0.25 0.25 0.25 0.125	0.25 0.125 0.0625 0.25 0.25 0.125 0.25 0.125 0.0625 0.25	0 0 0 100 100 100 100 100 90	50 20 20 0 0 0	y y y y
Q.135 rate ppm	2,4-D rate ppm	Activity (%)	P	S?	_	0.125 0.125 0.125 0.0625 0.0625	0.125 0.0625 0.25 0.125	100 100 70 90 70	0 0 0	y y y y
1 0.5	10 5	20 0 0			40 _	0.0625 Q.135	0.0625 Bicyclopyrone	20 Activity	0	у
1 1	2.5 10 5	0 90 100	50 50	y y	-	rate ppm	rate ppm	50	P	S?
1 0.5 0.5 0.5 0.5	2.5 10 5 2.5 1.25	90 50 50 50 50	50 20 20 20 20 20	y y y y	45	0.5	5 2.5 1.25 2.5 5	20 0 0 0 70 70	50 50	y y
Q.135 rate ppm	Pyraclostrobin rate ppm	Activity (%)	P	S?	50	0.5 0.5	1.25 2.5	50 50	20 20	y y
1 0.5 0.25		20 0 0			_	Q.135 rate ppm	Thiamethoxam rate ppm	Activity (%)	P	S?
1 1 1 0.5 0.5	0.2 0.1 0.05 0.025 0.2 0.1 0.05 0.025 0.2 0.1	20 0 0 0 70 50 50 50 50	36 20 20 20 20 20	y y y y	55	1 0.5 0.25 1 0.5 0.25	2.5 1.25 0.625 2.5 1.25 0.625	50 20 0 0 0 0 0 70 50 20	50 20 0	у у у
0.5 0.5 0.5 0.25	0.05 0.025 0.1	20 20 20 20	0 0 0	y y y y	_	Q.135 rate ppm	Mesotrione rate ppm	Activity (%)	P	S?
0.25	0.05	20	0	у	65	1 0.5		50 20		

	-continued					-continue	ed		
0.25 10 5	0 0 0			-	0.0625 0.0625	0.125 0.0625	20 20	0	y y
2. 1.	5 0			5	Q.135 rate ppm	Trinexapacethyl rate ppm	Activity (%)	P	S?
1 2. 1 5 0.5 1. 0.5 2. 0.25 0. 0.25 1. 0.5 10	70 25 50 5 50 625 20	50 50 20 20 0 0 20	y y y y y y	10	1 0.5 0.25	20 10 5 2.5	50 20 0 0 0 0		
	onazole Activity ppm (%)	P	S?	15	1	1.25 20 10	0 90 90	50 50	y
0. 0. 2 0. 1 0.	25 0 125 0 0625 0 5 100 25 100	85 20	y y	20	1 1 0.5 0.5 0.5 0.5 0.5 0.5 0.25 0.25	5 2.5 20 10 5 2.5 1.25 10 5	90 90 70 50 50 50 20 20	50 50 50 20 20 20 20 20 0 0	y y y y y y y y
0.5	125 70 25 90	60 20 20	y y y	25 •	Q.135 rate ppm	Paclobutrazol rate ppm	Activity (%)	P	S?
0.25 0. 0.25 0. 0.125 0.	0625 50 125 70 25 70 0625 20 1125 20 5 90 25 50	60 0 0 0 0 0 0 50 0 50	y y y y y y y	30 - 35	0.5 0.25 0.125 0.0625	2.5 1.25 0.625 2.5	20 0 0 0 0 0 0 0	20	у
	ppm Activity (%)	P	S?	_	0.5 0.25 0.25	1.25 2.5 1.25	100 100 90	20 0 0	y y y
2 1 0.5 20 10 5 2	70 20 0 0 0 0 0 90	70	у	40	0.25 0.125 0.125 0.125 0.125 0.0625	0.625 2.5 1.25 0.625 2.5 1.25	70 100 70 50 100 50	0 0 0 0 0	y y y y y
2 20 1 5 1 10	90 50 50	70 20 20	y y y	45	Q.135 rate ppm	Azoxystrobin rate ppm	Activity (%)	P	S?
0.5 5 1 20 0.5 10 0.5 20	20 50 20 20	0 20 0 0	y y y y	- 50	2 1 0.5 0.25		50 20 0 0		
•	ppm (%)	P	S?	- 50	3.23	0.2 0.1 0.05	20 0 0		
0.5 0.5 0.5 0.25 0.25 0.25 0.	20 0 0 0 0 25 20 125 0 0625 0 25 90 125 50 25 90 125 50 25 90 125 50 25 90 25 90 25 90 25 90 20 25 90 25 90 25 90 25 90 25 90 25 90 25 90 25 90 25 90 25 90 90 90 90 90 90 90 90 90 90	36 20 20 0 0 20	y y y y	55	2 2 1 1 1 1 0.5 0.5 0.5 0.5 0.5	0.05 0.025 0.1 0.05 0.2 0.1 0.05 0.025 0.2 0.1 0.05 0.05	0 90 70 70 50 50 50 50 50 20 20	50 50 36 20 20 20 20 0 0	y y y y y y y
0.125 0.	125 50 0625 20	0 0 20	y y y y	65 •	0.25 0.25	0.05 0.025	20 20	0	y y

	701						702			
	-continue	ed					-continu	ed		
Q.135 rate ppm	Trifloxystrobin rate ppm	Activity (%)	P	S?		0.125	0.05 0.025	0 50 0		
0.5 0.25	0.1 0.05 0.025 0.0125	20 0 50 50 50 20 0	26		5 5	2 1 1 0.5	0.0125 0.00625 0.05 0.025 0.05 0.0125	0 0 100 100 100 90	85 20 60 20	у у у у
0.5 0.5 0.25 0.25 0.25 0.25	0.025 0.0125 0.1 0.05 0.025 0.0125	50 50 70 50 50 20	36 20 50 50 20 0	y y y y	- 15	0.5 0.5 0.25 0.25 0.25 0.125 0.125	0.025 0.05 0.00625 0.0125 0.025 0.00625 0.0125	100 100 50 70 90 20 50	20 60 0 0 0 0	y y y y y y
Q.135 rate ppm	Fludioxonil rate ppm	Activity (%)	P	S?	_	0.125 0.125 0.125	0.05 0.025 0.05	100 70 100	50 0 50	y y y
0.25 0.125 0.0625 0.03125		0 0 0			20	Q.135 rate ppm	Glufosinate rate ppm	Activity (%)	P	S?
0.25 0.125 0.125 0.0625 0.0625 0.03125 0.03125	0.0625 0.03125 0.0625 0.0625 0.03125 0.0625 0.03125 0.0625 0.03125	70 0 100 100 50 100 50 100 50	70 70 0 70 0 70 0	y y y y y	25	1 0.5 0.25	20 10 5 2.5 2.5 5 2.5	20 0 0 0 0 0 0 0 50 50 50	20 20 0	у у у
Q.135 rate ppm	Copper hydroxide rate ppm	Activity (%)	P	S?	30	1 0.5 0.5 0.5	20 10 20 10	50 20 20 20 20	20 0 0 0	y y y y
1 0.5	5	50 20 0			35 -	Q.135 rate ppm	Procymidone rate ppm	Activity (%)	P	S?
1 1 0.5 0.5	2.5 1.25 2.5 5 1.25 2.5	0 0 70 70 50 50	50 50 20 20	y y y y	40	1 0.5 0.25	2.5 1.25 2.5 1.25	20 0 0 50 0 100 50	60	y y
Q.135 rate ppm	Abamectin rate ppm	Activity (%)	P	S?		Q.113 rate ppm	2.5 Fluxapyroxad rate ppm	90 Activity (%)	50 P	у S?
0.5 0.25	20 10 5 2.5	50 20 0 0 0 0 0			45	0.03125 0.015625 0.0078125 0.00390625	0.0625 0.03125	0 0 0 0 0 50 50		
1 1 0.5 0.5 0.5 1 0.25	1.25 2.5 5 10 1.25 2.5 5 20 1.25	0 90 90 70 50 70 50 70 20	50 50 50 20 20 20 50 0	y y y y y y	50 55	0.03125 0.015625 0.0078125 0.00390625 0.015625 0.0078125 0.00390625	0.015625 0.0078125 0.0625 0.03125 0.015625 0.0078125 0.0625 0.03125 0.015625	20 20 70 70 50 20 70 70 50	50 50 20 20 50 50 50	y y y y
0.25 0.5 0.25	2.5 10 5	20 50 50	0 20 0	y y y	-60	Q.113 rate ppm	Pyraclostrobin rate ppm	Activity (%)	P	S?
0.5 0.25	20 10	50 50	20 0	y y	60 - -	2		0		
Q.135 rate ppm	Prothioconazole rate ppm	Activity (%)	P	S?	-	0.5	2 0.25	0 70 50		
0.5 0.25		20 0			65	2	2 2	90 90	70 70	y y

	-continu	ed					-continu	ed		
1 0.5	0.25 2	70 90	50 70	y y	 - ₅	0.0625 0.03125 0.015625	0.0625 0.0625 0.0625	90 90 90	70 70 70	y y y
Q.113 rate ppm	Chlorotalonil rate ppm	Activity (%)	P	S?	<u>-</u>	0.015625 0.015625 0.0078125 0.0078125	0.015625 0.03125 0.0078125 0.015625	70 70 50 70	50 70 20 50	y y y
0.5 0.25	0.25	0 0 20			10	Q.113 rate ppm	Azoxystrobin rate ppm	Activity (%)	P	S?
1 0.5 0.25	0.25 0.25 0.25	50 70 70	20 20 20	y y y	_	0.5 0.25 0.125		0 0 0		
Q.113 rate ppm	Flutriafol rate ppm	Activity (%)	P	S?	_ 15	0.0625 0.03125	0.25	0 0 20		
2 1 2 2 1	2 1 2 1 2	0 0 0 0 50 20 20	0 0 0	y y y	20	0.5 0.25 0.125 0.125 0.0625 0.0625 0.03125	0.125 0.125 0.125 0.125 0.125 0.25 0.125 0.25 0.125	0 20 20 20 50 20 50 20	0 0 0 20 0 20 0	y y y y y
Q.113 rate ppm	Fludioxonil rate ppm	Activity (%)	P	S?	25 _	Q.113 rate ppm	Picoxystrobin rate ppm	Activity (%)	P	S?
0.25 0.125 0.0625 0.03125 0.25 0.125 0.125 0.0625 0.0625 0.03125	0.0625 0.03125 0.03125 0.0625 0.03125 0.0625 0.03125 0.0625	0 0 0 70 0 70 20 90 90 20 20	70 0 70 70 0 0	y y y y	30	2 1 0.5	2 1 0.5 2 1 0.5 2	0 0 0 50 50 50 70 70 70	50 50 50 50 50	y y y y
Q.113 rate ppm	Fenpropimorph rate ppm	Activity (%)	P	S?	- 35 -	Q.113 rate ppm	2 Trifloxystrobin rate ppm	Activity (%)	50 P	S?
2 1 0.5 0.25 0.125 2 1 1 0.5 0.5 0.5	0.5 0.25 0.125 0.5 0.5 0.25 0.5 0.25 0.125	0 0 0 0 0 70 0 100 100 100 100 70 20	70 70 0 70 0 0	y y y y y	40	2 1 0.5 2 2 2 2 1 1 0.5	2 1 0.5 2 1 0.5 2 1 2 2	0 0 0 50 50 50 70 70 70 70	50 50 50 50 50 50	y y y y y
0.25 0.25 0.125 0.125	0.25 0.5 0.25	70 90 20	70 70 0	y y y y	50	Q.113 rate ppm	Prothioconazole rate ppm	Activity (%)	P	S?
Q.113 rate ppm	Compound (VI) rate ppm	Activity (%)	P	S?	55	2 1 0.5 0.25 0.125		0 0 0 0		
0.25 0.125 0.0625 0.03125 0.015625 0.0078125	0.0625 0.03125 0.015625 0.0078125 0.0625 0.0625	0 0 0 0 0 0 70 70 50 20 90	70 70	y y	60	2 1 1 0.5 0.5 0.25 0.25 0.125 0.125	0.05 0.025 0.05 0.025 0.05 0.025 0.05 0.0	70 0 90 50 90 20 90 0 100 20 90	70 0 70 0 70 0 70 0 70	y y y y y
0.12.20	3,0023		, ,	J						

ontinued		

	-continu	ed					-continu	ed		
Q.113 rate ppm	Propiconazole rate ppm	Activity (%)	P	S?		Q.062 rate ppm	Fludioxonil rate ppm	Activity (%)	P	S?
2 1 0.5 0.25 0.125		0 0 0 0			5	0.25 0.1258 0.0625 0.03125	0.0625	0 0 0 0 0 50		
2 1 1 0.5 0.5	0.5 0.25 0.5 0.25 0.5 0.25 0.5	50 0 70 20 70 20 70	50 0 50 0 50	y y y y	10	0.25 0.125 0.125 0.0625 0.0625 0.03125	0.03125 0.03125 0.0625 0.03125 0.0625 0.03125 0.0625	90 20 90 100 20 20	50 0 50 50 0 0	y y y y y
0.25 0.25 0.125	0.25 0.5 0.25	0 70 20	0 50 0	y y	15 -	.062 rate ppm	Prothioconazole rate ppm	Activity (%)	P	S?
Q.062 rate ppm	Fluxapyroxad rate ppm	Activity (%)	P	S?		2 1 0.5		0 0 0		
0.03125 0.015625 0.0078125 0.00390625 0.03125 0.03125 0.015625 0.0078125 0.00390625 0.0078125	0.125 0.0625 0.03125 0.015625 0.0625 0.125 0.0625 0.03125 0.015625 0.015625	0 0 0 0 70 50 50 20 70 90 70 70 50	50 70 50 50 20 20	y y y y y	25	0.25 0.125 2 1 1 0.5 0.5 0.25 0.25 0.125	0.05 0.025 0.05 0.025 0.05 0.025 0.05 0.0	0 0 0 50 0 100 50 100 50 90 20 90 20 90	50 0 50 0 50 0 50 0 50	y y y y y y y
Q.062 rate ppm	Pyraclostrobin rate ppm	Activity (%)	P	S?	- -	Q.062 rate ppm	Flutriafol rate ppm	Activity (%)	P	S?
2 1 0.5 2 1 0.5 Q.062 rate ppm	2 2 2 2 2 Chlorotalonil rate ppm	0 0 0 70 90 90 90 Activity (%)	70 70 70 70	y y y	40	2 1 0.5 2 2 2 2 1 0.5	2 1 0.5 2 1 0.5 2 2	0 0 0 0 0 0 50 20 20 20	0 0 0 0	y y y y
1 0.5 0.25		0 0 0			45	Q.062 rate ppm	Paclobutrazol rate ppm	Activity (%)	P	S?
1 0.5 0.25	0.25 0.25 0.25 0.25	20 50 50 50	20 20 20	y y y	50	1 0.5 0.25 0.125	5	0 0 0 0 70		
Q.062 rate ppm	Picoxystrobin rate ppm	Activity (%)	P	S?	_	1	2.5 1.25 5	0 0 100	70	У
2 1 0.5	2 1 0.5 2	0 0 0 50 50 50 70	50	у	55	1 0.5 0.5 0.5 0.5 0.25 0.125	2.5 5 2.5 1.25 5 5 2.5	70 100 20 20 100 100	0 70 0 0 70 70	y y y y y y
2 2 1	1 0.5 2 1	70 70 70 70	50 50 50 50	y y y	60 -	Q.062 rate ppm	Fenpropimorph rate ppm	Activity (%)	P	S?
1 0.5 0.5	0.5 2 1	70 70 70 70	50 50 50	y y y	65	2 1 0.5 0.25		0 0 0		

708

nued			

	-continue	ed					-continu	ed		
0.125	0.5	0 70			-	Q.135 rate ppm	Metconazole rate ppm	% Activity	P	S?
2 1 1 0.5 0.5	0.25 0.125 0.5 0.5 0.25 0.5	0 0 100 100 100 100 70	70 70 0 70 0	y y y y	5	0.25 0.125 0.0625 0.03125	0.0625 0.03125	0 0 0 0 70		
0.5 0.25 0.25 0.125 0.125	0.125 0.5 0.25 0.5 0.25	20 100 70 90 20	0 70 0 70 0	y y y y	10	0.25 0.125 0.125 0.0625 0.0625 0.03125	0.0625 0.0625 0.03125 0.0625 0.03125 0.03125	90 90 50 100 20 20	70 70 0 70 0 0	y y y y y
Q.062 rate ppm	Procymidone rate ppm	Activity (%)	P	S?	15 -	Q.135 rate ppm	Paclobutrazol rate ppm	Activity (%)	P	S?
0.125 0.0625 0.03125 0.015625 0.125 0.0625 0.03125 0.015625 0.015625	1.25 0.625 0.3125 1.25 1.25 1.25 0.625 0.3125	0 0 0 0 0 0 0 0 70 100 90 70 50	0 0 0 0	y y y y	20	1 0.5 0.25 0.125	5 2.5 1.25 0.625 2.5 5	0 0 0 0 50 0 0 0 0 50 70	0 50 50	y y y
Q.062 rate ppm	Propiconazole rate ppm	Activity (%)	P	S?		0.5 0.5 0.25	2.5 1.25 5	50 20 70	0 0 50	y y y
2 1 0.5 0.25 0.125	0.5	0 0 0 0 0 0 50			30	0.25 0.25 0.25 0.125 0.125 0.125 0.125	2.5 1.25 0.625 5 2.5 1.25 0.625	50 20 20 70 50 20 20	0 0 0 50 0 0	y y y y y y
2 1	0.25 0.5 0.25	0 90 50	50 0	y y	35 -	Q.135 rate ppm	Fluopyram rate ppm	Activity (%)	P	S?
1 0.5 0.5 0.25 0.25 0.125	0.5 0.25 0.5 0.25 0.5 0.25	70 20 70 0 70 20	50 0 50 0 50 0	y y y	40	1 0.5 0.25 1 0.5 0.25	0.25 0.25 0.25 0.25 0.25	0 0 0 50 90 70	50 50 50	y y y
1	ci (Leaf Blotch) e fungus from cryc	genic stor	age wei	re directly	45	Q.135 rate ppm	Prothioconazole rate ppm	Activity (%)	P	S?
mixed into nutri placing a (DMS microtiter plate the fungal spore 24° C. and the a	ent broth (PDB po SO) solution of t (96-well format) the s was added. The t activity was detern	otato dextr he test co he nutrient est plates v	ose bro ompoun broth c were inc	oth). After ds into a ontaining cubated at		0.5 0.25 0.125 0.0625 0.03125 0.5 0.25 0.125	0.0125 0.0125 0.0125 0.0125	0 0 0 0 0 70 90 90	70 70 70	y y y
Q.135 rate ppm	Fluxapyroxad rate ppm	Activity (%)	P	S?	55	0.0625 0.03125	0.0125 0.0125	90 90	70 70	y y
0.03125 0.015625 0.0078125		0 0 0			_	Q.135 rate ppm	Propiconazole rate ppm	Activity (%)	P	S?
0.00390625 0.03125 0.015625 0.015625 0.0078125 0.00390625	0.0625 0.03125 0.015625 0.0625 0.03125 0.0625 0.03125 0.015625	0 20 0 0 70 20 90 50 20	20 0 20 0 0	y y y y	60	0.5 0.25 0.125 0.0625 0.03125	0.125 0.125 0.125	0 0 0 0 0 50 90	50 50	y y
						0.125	0.125	90	50	У

	-continue	ed					-continue	ed		
0.0625 0.03125	0.125 0.125	90 90	50 50	y y		Q.113 rate ppm	Flutriafol rate ppm	Activity (%)	P	S?
Q.135 rate ppm	Flutriafol rate ppm	Activity (%)	P	S?	- 5 -	2 1 0.5		0 0 0		
2 1 0.5 2 2 1	1 0.5 1 0.5 1	0 0 0 0 0 0 90 50	0 0 0	y y y	10	2 2 1 1 0.5 0.5	1 0.5 1 0.5 1 0.5 1 0.5	0 0 70 20 70 20 70 20	0 0 0 0 0	у у у у у
1 0.5 0.5	0.5 1 0.5	20 50 20	0 0 0	y y y	15	Q.113 rate ppm	Paclobutrazol rate ppm	Activity (%)	P	S?
Q.135 rate ppm	Mandipropamid rate ppm	% Activity	P	S?	- 20	0.5 0.125 0.0625 0.03125		0 0 0		
1 0.5 0.25 2 1 0.5 0.25	0.5 0.5 0.5 0.5 0.5	0 0 0 70 700 90 70 90	70 70 70 70 70	y y y	25	0.015625 0.5 0.125 0.0625 0.03125 0.015625	2.5 0.625 0.3125 0.15625 2.5 2.5 0.625 0.15625 0.3125	0 50 0 20 0 90 70 70 20 70	50 0 50 0 20	y y y y
Q.135 rate ppm	Penflufen rate ppm	Activity (%)	P	S?	30	Q.113 rate ppm	Picoxystrobin rate ppm	Activity (%)	P	S?
2 1 0.5	0.5 0.25 0.125 0.5	0 0 70 20 0 100 90	70 70	y y	35	0.0078125 0.00390625 0.0078125 0.0078125 0.00390625	0.03125 0.015625 0.0078125 0.03125 0.015625 0.0078125	0 0 90 70 50 90 90	70 70 50	у у у
1 0.5 0.5	0.25 0.25 0.125	70 50 20	20 20 0	y y y	40	Q.113 rate ppm	Fluazinam rate ppm	Activity (%)	P	S?
Q.135 rate ppm	Fluazinam rate ppm	Activity (%)	P	S?	-	0.015625 0.0078125 0.00390625	0.03125	0 0 0 20		
0.015625 0.0078125 0.00390625	0.03125 0.015625	0 0 0 20 0			45	0.015625 0.0078125 0.0078125 0.00390625	0.015625 0.03125 0.03125 0.015625 0.015625	0 50 50 20 20	20 20 0 0	y y y y
0.015625 0.0078125 0.0078125 0.00390625	0.03125 0.03125 0.015625 0.015625	50 50 20 20	20 20 0 0	y y y y	50	Q.113 rate ppm	Fludioxonil rate ppm	Activity (%)	P	S?
Q.113 rate ppm	Fluxapyroxad rate ppm	Activity (%)	P	S?	_	1 0.5 0.25	0.25	0 0 0 70	70	
0.03125 0.015625 0.0078125		0 0 0			- 55 -	1 0.5 0.25	0.25 0.25 0.25	90 90 90	70 70 70	у у у
0.00390625	0.0625 0.03125	0 20 0			60 –	Q.113 rate ppm	Prothioconazole rate ppm	Activity (%)	P	S?
0.03125 0.015625 0.015625 0.0078125 0.00390625	0.015625 0.0625 0.03125 0.0625 0.03125 0.015625	0 70 20 90 50 20	20 0 20 0 0	y y y y	65	0.5 0.25 0.125 0.0625 0.03125	0.0125 0.0125	0 0 0 0 0 70 90	70	у

	711						712			
	-continu	ed					-continu	ed		
0.25 0.125 0.0625	0.0125 0.0125 0.0125	90 90 90	70 70 70	y y y		Q.062 rate ppm	Fluazinam rate ppm	Activity (%)	P	S?
0.03125 Q.113 rate ppm	0.0125 Propiconazole rate ppm	90 Activity (%)	70 P	y S?	5	0.03125 0.015625 0.0078125 0.00390625	0.0025	0 0 0 0		
0.5 0.25 0.125 0.0625 0.03125 0.5 0.25	0.125 0.125 0.125	0 0 0 0 0 0 50 90	50 50	y	10	0.03125 0.015625 0.015625 0.0078125 0.0078125 0.00390625	0.0625 0.03125 0.015625 0.0625 0.0625 0.03125 0.03125 0.015625 0.015625	70 20 0 90 90 50 50 20	70 70 20 20 0 0	y y y y y
0.125 0.0625 0.03125	0.125 0.125 0.125 0.125	70 70 70 70	50 50 50	y y y	_	Q.062 rate ppm	Metconazole rate ppm	Activity (%)	P	S?
Q.062 rate ppm	Isopyrazam rate ppm	Activity (%)	P	y S?	20	0.25 0.125 0.0625 0.03125	0.0025	0 0 0		
0.0078125 0.00390625 0.0078125	0.03125 0.015625 0.03125	0 0 20 0 70	20	у	25	0.25 0.125 0.0625 0.03125	0.0625 0.0625 0.0625 0.0625 0.0625	50 70 70 70 70 70	50 50 50 50	y y y y
0.00390625	0.015625	70	0	У	_	Q.062 rate ppm	Paclobutrazol rate ppm	Activity (%)	P	S?
Q.062 rate ppm	Fluxapyroxad rate ppm	Activity (%)	P	S?	30	1 0.5 0.25		0 0 0		
0.03125 0.015625 0.0078125 0.00390625 0.03125 0.015625 0.015625 0.0078125 0.00390625	0.0625 0.03125 0.015625 0.0625 0.03125 0.0625 0.03125 0.015625	0 0 0 0 20 0 0 70 20 90 70 20	20 0 20 0	y y y y	35 40	1 0.5 0.5 0.5 0.25 0.25 0.25 0.25	10 5 2.5 1.25 0.625 2.5 10 2.5 1.25 10 5 2.5 0.625	70 70 20 0 0 50 100 70 20 100 100 70 90	20 70 20 0 70 70 20 0	y y y y y y
rate ppm	rate ppm	(%)	P	S?	_	Q.062 rate ppm	Fluopyram rate ppm	Activity (%)	P	S?
2 0.5 2 2 1 1 0.5	1 0.5 1 0.5 1 0.5 1	0 0 0 0 0 70 20 70 20 70	0 0 0 0	y y y y	50	0.125 0.0625 0.03125 0.125 0.0625 0.0625 0.03125	0.25 0.125 0.25 0.25 0.125 0.125	0 0 0 50 0 70 70 20 20	50 50 0	y y y y
Q.062 rate ppm	Picoxystrobin rate ppm	Activity (%)	P	S?	55	Q.062 rate ppm	Prothioconazole rate ppm	Activity (%)	P	S?
0.03125 0.015625 0.0078125 0.00390625 0.03125 0.015625 0.0078125 0.0078125 0.00390625	0.015625 0.0078125 0.0078125 0.0078125 0.0078125 0.0015625 0.0078125	0 0 0 0 70 20 50 20 70 100	20 20 20 70 20	y y y	60	0.5 0.25 0.125 0.0625 0.03125 0.5 0.25 0.125 0.0625 0.03125	0.0125 0.0125 0.0125 0.0125 0.0125 0.0125	0 0 0 0 0 70 90 90 90	70 70 70 70 70	y y y y

-continued

Q.062 rate ppm	Propiconazole rate ppm	Activity (%)	P	S?	
0.5		0			
0.25		0			
0.125		0			
0.0625		0			
0.03125		0			
	0.125	50			
0.5	0.125	90	50	У	
0.25	0.125	90	50	У	
0.125	0.125	90	50	У	
0.0625	0.125	70	50	у	
0.03125	0.125	70	50	у	

Gaeumannomyces graminis (Take-all of Cereals)

Mycelial fragments of the fungus from cryogenic storage $\ ^{20}$ were directly mixed into nutrient broth (PDB potato dextrose broth). After placing a (DMSO) solution of the test compounds into a microtiter plate (96-well format) the nutrient broth containing the fungal spores was added. The test plates were incubated at 24° C. and the activity was determined visually after 48 hrs

	Compound (V) rate ppm	Activity (%)	P	S?
Q.113				
rate ppm	_			
0.25		0		
0.125		0		
0.0625		0		
0.03125		0		
0.015625		0		
	0.0625	70		
	0.03125	20		
0.05	0.015625	0	70	
0.25	0.0625	90	70	У
0.125	0.03125	50	20	У
0.0625 0.0625	0.015625 0.03125	20 50	0 20	У
0.0625	0.03123	90	70	У
0.03123	0.03125	50	20	y y
Q.062	0.03123	30	20	У
rate ppm	_			
0.015625		0		
0.0078125		0		
0.00390625		0		
	0.0625	70		
	0.03125	20		
	0.015625	0		
0.015625	0.03125	50	20	у
0.0078125	0.015625	20	0	у
0.015625	0.0625	100	70	у
0.0078125	0.03125	70	20	У
0.00390625	0.015625	20	0	У

Pythium ultimum (Damping Off):

Mycelial fragments of the fungus, prepared from a fresh liquid culture, were directly mixed into nutrient broth (PDB potato dextrose broth). After placing a (DMSO) solution of the test compounds into a microtiter plate (96-well format) the nutrient broth containing the fungal spores was added. The test plates were incubated at 24° C. and the activity was determined visually after 48 hrs

	Q.135 rate ppm	Mefenoxam rate ppm	Activity (%)	P	S?
5	0.0625		0		
	0.03125		0		
	0.015625		0		
	0.0078125		0		
		0.03125	50		
	0.0625	0.03125	70	50	У
	0.03125	0.03125	50	50	
10	0.015625	0.03125	70	50	У
	0.0078125	0.03125	70	50	У

Mycosphaerella arachidis (y. Cercospora arachidicola),

Brown leaf spot of groundnut (peanut): Conidia of the fungus from cryogenic storage were directly mixed into nutrient broth (PDB potato dextrose broth). After placing a (DMSO) solution of the test compounds into a microtiter plate (96-well format) the nutrient broth containing the fungal spores was added. The test plates were incubated at 24° C. and activity was determined visually after 5-6 days.

_					
-	Q.135	Sedaxan	Activity		
25	rate ppm	rate ppm	(%)	P	S?
•	0.0625		50		
	0.03125		50		
	0.015625		20		
	0.0078125		0		
30		0.03125	0		
		0.015625	0		
		0.00390625	0		
	0.0625	0.03125	70	50	у
	0.0625	0.015625	70	50	У
	0.03125	0.031215	50	50	•
35	0.015625	0.00390625	50	20	y
55	0.0078125	0.00390625	20	0	у
•	Q.135	Fluazinam	Activity		
	rate ppm	rate ppm	(%)	P	S?
•	0.0625		50		
40	0.03125		50		
	0.15625		0		
	0.0078125		0		
		0.03125	0		
		0.015625	0		
		0.0078125	0		
45		0.00390625	0		
	0.0625	0.015625	70	50	У
	0.03125	0.015625	50	50	у
	0.015625	0.03125	20	0	у
	0.015625	0.015625	20	0	У
	0.015625	0.0078125	50	0	У
50	0.015625	0.00390625	50	0	У
	0.0078125	0.03125	20	0	У
	0.0078125	0.00390625	20	0	У
-	Q.135	Cyprodinil	%		
	rate ppm	rate ppm	Activity	P	S?
55	0.03125		50		
	0.015625		20		
		0.00125	0		
		0.0625	0		
		0.003125	0		
60		0.0015625	0		
0.0		0.00078125	0		
	0.03125	0.00078125	90	50	У
	0.03125	0.0015625	70	50	у
	0.03125	0.003125	70	50	У
	0.03125	0.00625	70	50	У
65	0.03125	0.0125	70	50	У
0.5	0.015625	0.00078125	50	20	У

0.5

0.25

715 -continued							716			
Q.135 rate ppm	Fludioxonil rate ppm	Activity (%)	P	S?	_	0.125 0.125	0.5 0.25			
0.03125 0.015625		50 20			5	0.0625 0.03125	0.25 0.125			
	0.0625 0.03125 0.015625	0 0 0				Q.113 rate ppm	Fenpropimorph rate ppm	Α		
0.03125 0.015625 0.015625	0.0078125 0.00390625 0.015625 0.0625 0.03125	0 0 70 50 50	50 20 20	y y y	10	0.125 0.0625 0.03125 0.015625				
0.015625 0.015625 0.015625	0.015625 0.0078125 0.00390625	50 50 50	20 20 20 20	y y y	15	0.125 0.125	0.0625 0.03125 0.0625 0.03125			
Q.135 rate ppm	Fenpropimorph rate ppm	Activity (%)	P	S?	_	0.0625 0.03125 0.015625	0.03125 0.0625 0.03125			
0.0625 0.03125 0.015625 0.0078125		70 70 70 20			20	Q.062 rate ppm	Bixafen rate ppm	A		
0.00390625	0.03125 0.015625 0.0078125	0 70 50 20			•	0.0625 0.03125 0.015625				
0.0625 0.03125	0.00390625 0.015625 0.015625	20 100 100	85 85	y y	25	0.0625 0.03125	0.0625 0.03125 0.0625			
0.015625 0.015625 0.0078125 0.0078125	0.0078125 0.00390625 0.03125 0.0078125	90 90 100 50	76 76 76 36	y y y y	30 .	0.03123 0.015625 0.015625	0.0625 0.0625 0.03125			
0.0078125 0.00390625 0.00390625	0.00390625 0.015625 0.0078125	50 70 50	36 50 20	y y y		Q.062 rate ppm	Fludioxonil rate ppm	Α		
Q.113 rate ppm	Sedaxan rate ppm	Activity (%)	P	S?	35	2 1 0.5				
0.125 0.0625	0.125	20 0 0				0.25 0.125	0.5			
	0.0625 0.03125 0.015625	0 0 0			40	2	0.25 0.125 0.5			
0.125 0.0625 0.0625 0.0625	0.125 0.125 0.0625 0.03125	50 20 20 20 20	20 0 0 0	y y y		1 0.5 0.5 0.5	0.5 0.5 0.25 0.125			
0.0625 Q.113	0.015625 Fluazinam	20 Activity	Ö	y	_ 45	0.25 0.25 0.25 0.125	0.123 0.5 0.25 0.25			
0.03125	rate ppm	(%)	P	S?	-	Q.062 rate ppm	Cyprodinil rate ppm	A		
0.015625 0.0078125	0.0625	0 0 20			50	1	0.2			
0.03125 0.015625 0.0078125	0.03125 0.0625 0.0625 0.03125	0 50 50 20	20 20 0	y y y		1	0.1 0.1 0.05 0.025 0.025			
Q.113 rate ppm	Fludioxonil rate ppm	Activity (%)	P	S?	- 55	1 1 1	0.025 0.1 0.2			
0.5 0.25 0.125 0.0625 0.03125	0.5	70 70 50 20 0				Septoria tritici (Leaf Blotch): After placing solutions of the test of 0.2% DMSO) into a microtiter plat				
0.5	0.5 0.25 0.125 0.25	70 0 0 100	70	v		of the well. Fina	f the nutrient broth ally the fungal spo incubated at 20° (re s		

у у

0.25

0.25

est compounds (containing plate (96-well format), an (YBG) was added to each re solution was added. The 65 test plates were incubated at 20° C. The inhibition of growth was determined photometrically after 6 days and the activity calculated in relation to untreated control.

Activity (%)

Activity

Activity

(%)

70

Activity (%)

75

P

P

0

P

y y

у

S?

у у у

S?

У

S?

у у у у

S?

y y

711					_	-continued				
Q.135 rate ppm	Tebuconazole rate ppm	Activity (%)	P	S?	_	1.25 1.25	2.5 1.25	98 87	88 69	y y
1.25 0.625 0.3125	1.25	24 25 35 0			5	Q.062 rate ppm	Prothioconazole rate ppm	Activity (%)	P	S?
1.25 0.625 0.3125	1.25 1.25 1.25 1.25	59 51 54	24 25 35	y y y	- 10	0.3125 0.15625 0.0078125	0.0625	33 38 31 63		
Q.135 rate ppm	Epoxiconazole rate ppm	% Activity	P	S?	_	0.3125 0.15625	0.03125 0.0625 0.0625	9 88 98	75 77	y y
1.25 0.625 0.3125 0.15625		22 32 34 29			15	0.078125 Q.062 rate ppm	0.03125 Tebuconazole rate ppm	Activity (%)	37 P	у S?
1.25 0.625 0.625 0.3125 0.15625 0.15625 Q.113 rate ppm	0.3125 0.15625 0.3125 0.3125 0.15625 0.3125 0.3125 0.15625 Cyproconazole rate ppm	78 65 95 98 94 100 100 98	83 85 76 86 85 75	y y y y y	20	5 2.5 1.25 5 5 5 2.5 2.5 1.25	5 2.5 5 2.5 5 2.5 5	57 41 51 73 47 100 96 100 81	89 77 84 69 87	y y y y
10	1	63 84			_ 25 _	Q.062 rate ppm	Prochloraz rate ppm	Activity (%)	P	S?
10 10 10	0.5 0.25 1 0.5 0.25	64 0 100 100 86	94 87 63	y y y	30	0.625 0.3125 0.625	0.03125 0.015625 0.03125	35 37 80 48 98	87	у
Q.113 rate ppm	Prothioconazole rate ppm	Activity (%)	P	S?		0.625 0.3125	0.015625 0.03125	79 97	66 87	y y
0.15625 0.078125 0.0390625		42 31 28			35	Q.062 rate ppm	Epoxiconazole rate ppm	Activity (%)	P	S?
0.01953125 0.15625 0.078125 0.078125 0.0390625 0.01953125 0.01953125	0.0390625 0.01953125 0.0390625 0.0390625 0.01953125 0.0390625 0.0390625 0.01953125	15 63 69 96 100 100 99 100 93	78 74 79 73 68 74	y y y y y	40	2.5 1.25 0.625 0.3125 2.5 1.25 0.625	0.625 0.3125 0.625 0.3125 0.3125	48 51 48 42 71 33 98 77	85 67 65	у у у
Q.113 rate ppm	Epoxiconazole rate ppm	Activity (%)	P	S?	45	0.3125 Q.062	0.3125 Difenoconazole	71 Activity	61	У
1.25 0.625 0.3125 0.15625 0.078125 1.25 0.625 0.3125 0.15625 0.078125	0.3125 0.3125 0.3125 0.3125 0.3125 0.3125	42 39 34 34 33 50 97 100 99 99	71 70 67 67 67	y y y y	50	0.625 0.3125 0.15625 0.078125 0.00390625 0.625 0.3125 0.15625 0.078125 0.00390625	0.15625 0.15625 0.15625 0.15625 0.15625 0.15625	(%) 40 36 39 29 32 48 89 81 77 81 84	69 67 68 63 64	y y y y y
Q.062 rate ppm	Cyproconazole rate ppm	Activity (%)	Р	S?	-	Q.062 rate ppm	Compound (S)-(VII) rate ppm	Activity (%)	P	S?
2.5 1.25 5 2.5 2.5	2.5 1.25 1.25 2.5 1.25	49 48 76 39 96 100 86	78 88 69	y y y	65	0.625 0.3125	0.125 0.0625 0.03125	26 22 62 44 0		

25

30

35

40

60

 $Sclerotinia\ sclerotiorum\$ on Oilseed Rape, Preventive Treatment

The compound activity was tested under 1 day preventive conditions. Oilseed rape plants with 3 unfolded leafs were sprayed with a track sprayer and 200 I/ha spray volume with the test compounds, either solo or in tankmix as shown in the table below.

1 day after application the plants were infested with a solution of *Sclerotinia sclerotiorum* mycelium. The plants 10 were placed under plastic hoods and high humidity conditions in a climate chamber at 14 h day/10 h night cycle and 15° C. Disease infestation was evaluated visually 11 days after application and average activity calculated in relation to disease severity on untreated check.

	Boscalid rate g a.i./ha	Activity (%)	P	S?
Q.135 rate ppm				
100		15		
50		0		
25		ŏ		
23	100	25		
	50	8		
100	100	59	36	у
50	50	49	8	у
25	100	76	25	у
100	50	62	21	y
50	50	92	10	y
25	100	83	25	у
100	50	93	32	y
Q.113				
rate ppm				
100		39		
50		2		
25		2		
	100	25		
	50	8		
100	100	83	54	У
50	50	89	10	У
25	100	83	26	У
100	50	86	44	У
Q.062				
rate ppm				
100		26		
50		20		
25		0		
2.5	100	25		
	50	8		
100	100	91	44	у
50	50	92	10	у
25	100	83	25	y
100	50	93	32	y

Sphaerotheca fuliqinea (Powdery Mildew) on Cucumber, Preventive Treatment

The compound activity was tested under 2 days preventive conditions. Cucumber plants with unfolded cotyledons were sprayed with a roomsprayer and 40 ml/4 plants spray volume with the test compounds, either solo or in tankmix as shown in the table below.

2 days after application the plants were infested with spores of *Sphaerotheca fuliginea*. The plants were placed in a climate chamber under 70% rel. humidity, 22° C. and 14 h day/10 h night cycle. Disease infestation was evaluated visually 10 days after application and average activity calculated in relation to disease severity on untreated check.

	Acibenzolar-s- methyl rate ppm	Activity (%)	P	S?
Q.135 rate ppm	_			
2 0.6 0.2	20 6 2 0.6	0 0 0 4 0 0		
2 2 0.6 0.6 0.2 Q.113 rate ppm	20 6 6 2 2	49 16 15 4 3	4 0 0 0 0	y y y
2 0.6 0.2	20 6 2 0.6	0 0 0 4 0 0		
2 2 0.6 0.6 0.2 Q.062 rate ppm	20 6 6 2 2	18 12 5 7 9	4 0 0 0 0	y y
2 0.6 0.2	20 6 2 0.6	7 0 0 4 0 0		
2 2 0.6 0.6 0.2	20 6 6 2 2	11 4 9 5 9	11 7 0 0 0	y y

Fusarium spp. on Wheat, Preventive Treatment

The compound activity was tested under 1 day preventive condition. Flowering wheat plants were sprayed with a track sprayer and 220 I/ha spray volume with the test compounds, either solo or in tankmix as shown in the table below. The compounds were formulated as standard EC100 and diluted into water to the given spray-dosis.

50 1 day after application the flowering ears were infested with a mix of spores of Fusarium graminearum and Fusarium culmorum. The plants were placed in a climate chamber under 60% rel. humidity, and 14 h day/10 h night cycle with 23/21° C. Disease infestation was evaluated visually 9 days after application and average activity calculated in relation to disease severity on untreated check.

Compound	g a.i./ha	Activity (%)	P	S?
Prothioconazole (PTZ)	50	55		
Q.062	200	17		
Q.135	200	28		
Q.113	200	23		
Q.151	200	3		
PTZ + Q.062	200 + 50	83	63	У
PTZ + Q.135	200 + 50	86	68	y

Q.151

-continued

Compound	g a.i./ha	Activity g a.i./ha (%) P S				
PTZ + Q.113	200 + 50	85	65	У		
PTZ + Q.151	200 + 50	88	56	y		

Phakopsora pachyrhizi on Soybean, Preventive Treatment
The compound activity was tested under 1 day preventive
conditions. Soybean plants with a fully enfolded first trifoliate leaf were sprayed with a track sprayer and 50 I/ha spray
volume with the test compounds, either solo or in tankmix as
shown in the table below. 1 day after application leaf discs
were cutted from the first trifoliate leaf and placed in multiwell plates on water-agar. 5 leaf discs per treatment where
infested with spores of a triazole tolerant soybeanrust strain.
The multiwell plates where sealed and placed in an incubator
48 h in darkness and 12 h light/dark cycle afterwards. Rust
infestation on leaf discs was evaluated visually 11 days after
application and average activity calculated in relation to disease severity on untreated check leaf discs.

Compound	Rate (g ai/ha)	Activity (%)	P	S?
Cyproconazole	2	53	N/A	N/A
Cyproconazole	0.5	38	N/A	N/A
Q.062	2	13	N/A	N/A
Q.062	0.5	0	N/A	N/A
Q.063	2	0	N/A	N/A
Q.063	0.5	0	N/A	N/A
Q.113	2	25	N/A	N/A
Q.113	0.5	1	N/A	N/A
Q.135	2	41	N/A	N/A
Q.135	0.5	13	N/A	N/A
Q.062 +	2 + 2	99	59	Yes
Cyproconazole				
Q.062 +	2 + 0.5	78	46	Yes
Cyproconazole				
Q.062 +	0.5 + 2	96	53	Yes
Cyproconazole				
Q.063 +	2 + 2	100	53	Yes
Cyproconazole				
Q.063 +	2 + 0.5	98	38	Yes
Cyproconazole				
Q.063 +	0.5 + 2	98	53	Yes
Cyproconazole				
Q.113 +	2 + 2	100	65	Yes
Cyproconazole				
Q.113 +	2 + 0.5	94	54	Yes
Cyproconazole	0.5.0	0.6		•
Q.113 +	0.5 + 2	96	54	Yes
Cyproconazole	2 . 2	0.5	73	37
Q.135 +	2 + 2	95	72	Yes
Cyproconazole	2 + 0.5	0.0	72	Yes
Q.135 +	2 + 0.5	98	12	res
Cyproconazole Q.135 +	0.5 + 2	97	46	Yes
Cyproconazole	0.3 ± 2	91	40	res

Septoria tritici on Wheat, Preventive Treatment

Four pots per treatment with 4 plants of the wheat variety Riband in each of 6.5 cm pots have been treated 14 days after sowing with the compounds given in the results table. The compounds were formulated as standard EC100 and diluted 60 into water to the given spray-dosis. One day after application of the compounds solo and in mixture, the plants were infested with spores of *Septoria tritici*. To enable a good infestation, the plants were covered with a plexiglas hood for 48 h after inoculation. The plants grew in a controlled environment for 14 h at 21° C. during day and 10 h at 19° C. during night. 18 days after application the infestation of the 2^{nd} leaf

of each of the plants and of the untreated, infested check was evaluated visually. The activity data in the table then derived from a calculation of the infestation of the means of the 4 plants of 4 repetitions of each of the solo or mixture treatments with the mean of the of the 4 plants of 4 repetitions of the untreated infested check.

		Activity		
	ga/ha	(%)	P	S?
compound (VII)	27	96	N/A	N/A
	9	20		
	3	0		
Q.062	27	71	N/A	N/A
	9	8		S? N/A N/A N/A N/A N/A Y Y Y Y Y Y Y Y Y Y Y Y S?
	3	6		
Q.135	27	82	N/A	N/A
	9	33		N/A N/A N/A N/A N/A Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y
0.112	3	0	NT/A	3.T/A
Q.113	27 9	16 0	N/A	IN/P
	3	0		
Q.151	27	ő	N/A	N/A
Q.131	9	ŏ	14/21	1.02
	3	Ö		
compound (VII) +	9 + 27	98	77	Y
Q.062	3 + 9	36	8	
compound (VII) +	27 + 27	99	99	
Q.062	9 + 9	93	26	Y
compound (VII) +	27 + 9	97	97	
Q.062	9 + 3	58	25	Y
compound (VII) +	9 + 27	98	47	
Q.135	3 + 9	47	0	Y
compound (VII) +	27 + 27	100	99	
Q.135	9+9	92	47	Y
compound (VII) +	27 + 9	100	98	37
Q.135	9 + 3	91	20	
compound (VII) +	9 + 27 3 + 9	97 38	33 0	
Q.113 compound (VII) +	27 + 27	100	97	1
Q.113	9+9	76	20	v
compound (VII) +	27 + 9	99	96	
Q.113	9 + 3	70	20	Y
compound (VII) +	9 + 27	97	20	
Q.151	3 + 9	69	0	Y
compound (VII) +	27 + 27	99	96	
Q.151	9 + 9	96	20	Y
compound (VII) +	27 + 9	99	96	
Q.151	9 + 3	71	20	Yes
		Activity		
Compound	g a.i./ha	(%)	P	S?
Difenoconazole	27	5		
(DFZ)	9	3		
	3	0		
	1	0		
0.002	0.33	0		
Q.062	81	61		
	27	50		
	9	26		
	3	8		
0.125	1	2		
Q.135	81	70 52		
	27	52		
	9	43		
	3	9		
0.112	1	0		
Q.113	81	53		
Q.113				

25

Y

	-contin	ued			
DFZ +	27 + 81	97	63	Y	
Q.062	9 + 27	49	51		
	27 + 27	85	52	Y	_
	9 + 9	21	28		5
	27 + 9	61	30	Y	
	9 + 3	0	10		
DFZ +	27 + 81	100	71	Y	
Q.135	9 + 27	92	54	Y	
	27 + 27	90	55	Y	
	9 + 9	42	45		10
	27 + 9	68	46	Y	
	9 + 3	41	12	Y	
DFZ +	27 + 81	98	56	Y	
Q.113	9 + 27	94	62	Y	
	27 + 27	95	63	Y	
	9 + 9	69	31	Y	15
	27 + 9	91	32	Y	
	9 + 3	50	3	Y	
DFZ +	27 + 81	94	46	Y	
Q.151	9 + 27	68	15	Y	
-	27 + 27	97	17	Y	
	0 . 0	64	2	37	

What is claimed is:

1. A fungicidal composition, comprising a combination of components A) and B), wherein component A) is a compound of formula (I)

9 + 3

85

wherein

 $\rm R_1$ and $\rm R_2$ are each independently selected from hydrogen, $\rm C_1\text{-}C_4$ alkyl, $\rm C_3\text{-}C_4$ alkenyl, $\rm C_3\text{-}C_4$ alkynyl, ($\rm R_{10}$)carbonyl and ($\rm R_{10}$)oxycarbonyl;

or R₁ and R₂ together with the nitrogen atom to which they are attached form a 5- or 6 membered cyclic group which 45 may be saturated or unsaturated and may contain a further heteroatom selected from S or O:

R₃ represents hydrogen, halogen, cyano, nitro, mercapto, hydroxy, — $C(=S)NH_2$, — SF_5 , C_1 - C_6 alkyl, C_1 - C_6 haloalkyl, C_2 - C_6 alkenyl, C_2 - C_6 haloalkenyl, C_2 - C_6 50 alkynyl, C_2 - C_6 haloalkynyl, C_1 - C_6 alkoxy, C_1 - C_6 haloalkoxy, C₃-C₆ cycloalkyl, amino, C₁-C₂ alkylamino, di(C₁-C₆alkyl)amino, a 5-membered heterocycle containing 1-4 nitrogen atoms, piperidino, morpholino, thiomorpholino, formyl, hydroxycarbonyl, 55 C_2 - C_7 alkoxycarbonyl, C_2 - C_7 haloalkoxycarbonyl, C₄-C₇ al kenyloxycarbonyl, C₄-C₇ haloalkenyloxycarbonyl, C₂-C₇ alkylcarbonyl, C₂-C₇ haloalkylcarbonyl, C₁-C₆ alkylthio, C₁-C₆ alkylsulfinyl, C₁-C₆ alkylsulfonyl, C₁-C₆ haloalkylthio, C₁-C₆ haloalkylsulfinyl, C₁-C₆ haloalkylsulfonyl, C₁-C₆ hydroxyalkyl, phenyl or benzyl wherein the phenyl and benzyl are optionally substituted by one or more groups independently selected from the group consisting of halogen, cyano, hydroxy, mercapto, amino, C₁-C₆ alkyl, C₁-C₆ haloalkyl, C₁-C₆ 65 alkoxy, C₁-C₆ haloalkoxy, C₁-C₆ alkylthio, C₁-C₆ alkylsulfinyl and C₁-C₆ alkylsulfonyl;

R₄ represents hydrogen, halogen, cyano, amino, C₁-C₄ alkyl, C₁-C₄ haloalkyl, C₃-C₆ cycloalkyl, C₂-C₄ alkenyl, C₂-C₄ alkynyl, C₁-C₄ alkoxy, C₁-C₄ haloalkoxy, C₁-C₄ alkylthio, C₁-C₄ alkylsulfinyl, C₁-C₄ alkylsulfonyl, methylamino or dimethylamino;

yl, C_3 - C_{12} alkenyl, C_1 - C_{12} alkylsulfonyl, is hydrogen, C_1 - C_{12} alkyl, C₃-C₁₂alkynyl, C2-C12 alkenylsulfonyl, phenylsulfonyl or benzylsulfonyl, or is C₁-C₁₂alkyl, C₂-C₁₂alkenyl, C₂-C₁₂alkynyl, C₁-C₁₂alkylsulfonyl, C₂-C₁₂alkenylsulfonyl, phenylsulfonyl or benzylsulfonyl mono- to polysubstituted by substituents independently selected from the group consisting of halogen, cyano, nitro, hydroxy, mercapto, C₂-C₇alkylcarbonyl, azido, formyl, C_2 - C_7 haloalkylcarbonyl, C_1 - C_6 alkyl, C_1 - C_6 haloalkyl, C₁-C₆alkoxy, C₁-C₆haloalkoxy, C_1 - C_6 alkylthio, C₁-C₆alkylsulfinyl and C₁-C₆alkylsulfonyl; or

R₅ is formyl, C₂-C₁₂ alkylcarbonyl, C₃-C₁₂ alkenylcarbonyl, C₃-C₁₂ alkynylcarbonyl, C₄-C₁₂ cycloalkylcarbonyl, benzylcarbonyl, phenylcarbonyl, $\mathrm{C}_2\text{-}\mathrm{C}_{12}$ alkoxycar- C_4-C_{12} alkenyloxycarbonyl, $C_4 - C_{12}$ alkynyloxycarbonyl, C4-C12 cycloalkoxycarbonyl, benzyloxycarbonyl or phenoxycarbonyl, or is C2-C12 alkylcarbonyl, C₃-C₁₂ alkenylcarbonyl, C₃-C₁₂ alkynylcarbonyl, C_4 - C_{12} cycloalkylcarbonyl, benzylcarbonyl, phenylcarbonyl, C_2 - C_{12} alkoxycarbonyl, C_4 - C_{12} alkenyloxycarbonyl, C_4 - C_{12} alkynyloxycarbonyl, C_4 - C_{12} cycloalkoxycarbonyl, benzyloxycarbonyl or phenoxycarbonyl mono- to polysubstituted by substituents independently selected from the group consisting of halogen, cyano, C₁-C₆ alkyl, C₁-C₆ haloalkyl and C₁-C₆ alkoxy; or

 $\begin{array}{llll} R_5 & is & (R_{51})(R_{52})(R_{53})Si - , & (R_{51})(R_{52})(R_{53})Si - (C_1 - C_{12}alkyl) - , & (R_{51})(R_{52})(R_{53})Si - (C_3 - C_8cycloalkyl) - , \\ & (R_{54}O)(R_{55}O)(R_{56}O)Si - , & (R_{54}O)(R_{55}O)(R_{56}O)Si - \\ & (C_1 - C_{12} & alkyl) - & or & (R_{54}O)(R_{55}O)(R_{56}O)Si - (C_3 - C_8 - C_8) - \\ & cycloalkyl) - ; & or & (R_{54}O)(R_{55}O)(R_{56}O)Si - C_8 - C_8 - C_8) - \\ & cycloalkyl) - ; & or & (R_{54}O)(R_{55}O)(R_{56}O)Si - C_8 - C_8) - \\ & cycloalkyl) - ; & or & (R_{54}O)(R_{55}O)(R_{56}O)Si - C_8 - C_8) - \\ & cycloalkyl) - ; & or & (R_{54}O)(R_{55}O)(R_{56}O)Si - C_8 - C_8) - \\ & cycloalkyl) - ; & or & (R_{54}O)(R_{55}O)(R_{56}O)Si - C_8 - C_8) - \\ & cycloalkyl) - ; & or & (R_{54}O)(R_{55}O)(R_{56}O)Si - C_8 - C_8 - C_8) - \\ & cycloalkyl) - ; & or & (R_{54}O)(R_{55}O)(R_{56}O)Si - C_8 - C$

 R_5 is C_1 - C_6 alkyl-B— C_1 - C_{12} alkyl-, C_2 - C_6 alkenyl-B— C_1 - C_2 - C_6 alkynyl-B— C_1 - C_{12} alkyl-, C_{12} alkyl-, C₃-C₈cycloalkyl-B—C₁-C₁₂alkyl-, benzyl-B— C_1 -C₁₂alkyl-, phenyl-B—C₁-C₁₂alkyl-, C₁-C₆alkyl-B-C₂-C₆alkenyl-B—C₂-C₁₂alkenyl-, C_2 - C_{12} alkenyl-, C_2 - C_6 alkynyl-B— C_2 - C_{12} alkenyl-, C_3 - C_8 cycloalkyl- $B-C_2-C_{12}$ alkenyl-, benzyl- $B-C_2-C_{12}$ alkenyl-, phenyl-B—C₂-C₁₂alkenyl-, C_1 - C_6 alkyl-B— C_2 -C₂-C₆alkenyl-B—C₂-C₁₂alkynyl-, C₁₂alkynyl-, C_2 - C_6 alkynyl-B— C_2 - C_{12} alkynyl-, C_3 - C_8 cycloalkyl- $B-C_2-C_{12}$ alkynyl-, benzyl- $B-C_2-C_{12}$ alkynyl-, phenyl-B—C₂-C₁₂alkynyl-, C_1 - C_6 alkyl-B— C_3 -C₈cycloalkyl-, C₂-C₆alkenyl-B—C₃-C₈cycloalkyl-, C2-C6alkynyl-B—C3-C8cycloalkyl-, C3-C8cycloalkyl-B—C₃-C₈cycloalkyl-, benzyl-B—C₃-C₁₂cycloalkyl- or phenyl-B—C₃-C₁₂cycloalkyl-, wherein the group B is —C(≡O)—, selected from —C(=S)—, $-C(=NOR_{59}) -C(R_{60})=NO-$, -ON=C (R_{60}) —, —O—C(=O)—, —C(=O)—O—, —O—, —S—, —S(=O)—, —S(=O)2-, —S(=O) $(=NR_{13})-, -S(=O)(R_{14})=N-, -N=S(=O)$ (R_{14}) —, $-N(R_{62})$ —C=O)—, -C=O)— $N(R_{62})$ —, $-N(R_{62})$ — SO_2 — or — SO_2 — $N(R_{62})$ —; or

 $\begin{array}{lll} R_5 \text{ is } C_1\text{-}C_6 \text{alkyl-B} - C_1\text{-}C_{12} \text{alkyl-, } C_2\text{-}C_6 \text{alkenyl-B} - C_1\text{-}\\ C_{12} \text{alkyl-,} & C_2\text{-}C_6 \text{alkynyl-B} - C_1\text{-}C_{12} \text{alkyl-,}\\ C_3\text{-}C_8 \text{cycloalkyl-B} - C_1\text{-}C_{12} \text{alkyl-,} & \text{benzyl-B} - C_1\text{-}\\ C_{12} \text{alkyl-,} & \text{phenyl-B} - C_1\text{-}C_{12} \text{alkyl-,} & C_1\text{-}C_6 \text{alkyl-B} - C_2\text{-}\\ C_{12} \text{alkenyl-,} & C_2\text{-}C_6 \text{alkenyl-B} - C_2\text{-}C_{12} \text{alkenyl-,}\\ C_2\text{-}C_6 \text{alkynyl-B} - C_2\text{-}C_{12} \text{alkenyl-,} & C_3\text{-}C_8 \text{cycloalkyl-B} - C_2\text{-}C_{12} \text{alkenyl-,} & \text{phe-}\\ D_2\text{-}C_{12} \text{alkenyl-,} & D_2\text{-}C_{12} \text{al$

726

 $\begin{array}{lll} & \text{nyl-B--C}_2\text{-}C_{12}\\ \text{alkenyl-}, & \text{C}_1\text{-}C_6\\ \text{alkynyl-}, & \text{C}_2\text{-}C_6\\ \text{alkenyl-B--C}_2\text{-}C_{12}\\ \text{alkynyl-}, & \text{C}_2\text{-}C_6\\ \text{alkenyl-B--C}_2\text{-}C_{12}\\ \text{alkynyl-}, & \text{C}_3\text{-}C_8\\ \text{cycloalkyl-B--C}_2\text{-}C_{12}\\ \text{alkynyl-}, & \text{benzyl-B--C}_2\text{-}C_{12}\\ \text{alkynyl-}, & \text{phenyl-B--C}_3\text{-}C_8\\ \text{cycloalkyl-}, & \text{C}_1\text{-}C_6\\ \text{alkynyl-B--C}_3\text{-}C_8\\ \text{cycloalkyl-}, & \text{C}_2\text{-}C_6\\ \text{alkenyl-B--C}_3\text{-}C_8\\ \text{cycloalkyl-}, & \text{C}_3\text{-}C_8\\ \text{cycloalkyl-}, & \text{C}_3\text{-}C_8\\ \text{cycloalkyl-}, & \text{C}_3\text{-}C_8\\ \text{cycloalkyl-}, & \text{benzyl-B--C}_3\text{-}C_8\\ \text{cycloalkyl-}, & \text{phenyl-B--C}_3\text{-}C_1\\ \text{cycloalkyl-}, & \text{all of which, in turn, are mono- to poly-substituted by substituents independently selected from the group consisting of halogen, cyano, hydroxy, mercapto, & C_1\text{-}C_6\\ & \text{haloalkyl}, & C_1\text{-}C_6\\ & \text{alkylsulfinyl} & \text{and } & \text{C}_1\text{-}C_6\\ & \text{alkylsulfonyl}; & \text{or} & \text{cyano}, \\ & \text{alkylsulfinyl} & \text{and } & \text{C}_1\text{-}C_6\\ & \text{alkylsulfonyl}; & \text{or} & \text{cyano}, \\ & \text{alkylsulfonyl}; & \text{or} & \text{cyano}, \\ & \text{alkylsulfonyl}; & \text{or} & \text{cyano}, \\ & \text{cyano}, & \text{cyano},$

A is a three- to ten-membered monocyclic or fused bicyclic ring system which can be aromatic, partially saturated or 20 fully saturated and can contain 1 to 4 hetero atoms selected from the group consisting of nitrogen, oxygen and sulphur, it not being possible for each ring system to contain —O—O—, —S—S— and —O—S— fragments, and it being possible for the three- to ten-membered ring system to be itself mono- or polysubstituted

A1) by substituents independently selected from the group consisting of

halogen, cyano, nitro, hydroxy, mercapto, azido, formyl, carboxy, =O, =S, C₁-C₆ alkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl, C₃-C₈ cycloalkyl, C₁-C₆ haloalkyl, C₂-C₆ haloalkenyl, C₂-C₆ haloalkynyl, C₃-C₈ halocycloalkyl, C₁-C₆ alkoxy, C₁-C₆ haloalkoxy, C₃-C₆ alkenyloxy, C₃-C₆ haloalkenyloxy, C₃-C₆ alkynyloxy, C₃-C₈ cycloalkyloxy, benzyl, benzyloxy, phenyl and phenoxy, 35 where the benzyl, benzyloxy, phenyl and phenoxy, in turn, may be mono- to polysubstituted by substituents independently selected from the group consisting of halogen, cyano, nitro, hydroxy, mercapto, amino, C₁-C₆ alkyl, C₁-C₆ haloalkyl, C₁-C₆ alkylsulfinyl and C₁-C₆ alkylsulfonyl; or

A2) by substituents independently selected form the group consisting of $(R_{14})S(=O)(=NR_{13})-$, $(R_{14})(R_{15})S$ (=O)=N-; $-Si(R_{51})(R_{52})(R_{53})$, $-NR_{57}R_{58}$, 45 $-C(=O)NR_{57}R_{58}$, $-C(=S)NR_{57}R_{58}$, HC $(=NOR_{59})-$, $(C_1-C_6alkyl)C(=NOR_{59})-$,

A3) by substituents independently selected from the group consisting of

formyl, C_2 - C_7 alkylcarbonyl, C_2 - C_7 haloalkylcarbonyl, C_3 - C_7 alkenylcarbonyl, C_3 - C_7 haloalkenylcarbonyl, 55 C_4 - C_9 cycloalkylcarbonyl, C_4 - C_9 halocycloalkylcarbonyl, C_2 - C_7 alkoxycarbonyl, C_2 - C_7 haloalkoxycarbonyl, C_3 - C_7 al kenyloxycarbonyl, C_3 - C_7 alkynyloxycarbonyl, C_4 - C_9 cycloalkoxycarbonyl, C_2 - C_7 alkylthiocarbonyl and benzyloxycarbonyl, and benzyloxycarbonyl monoto polysubstituted by substituents independently selected from the group consisting of halogen, cyano, hydroxy, C_1 - C_6 alkyl, C_1 - C_6 haloalkyl and C_1 - C_6 alkoxy; or

A4) by substituents independently selected from the group 65 consisting of hydroxyl, C₁-C₄ alkyl, C₂-C₄ alkenyl, C₂-C₄ alkynyl, C₁-C₄ alkoxy, halogen, C₁-C₄ haloalkyl,

 C_2 - C_4 haloalkenyl, cyano, benzyl, phenyl, =C($R^{36'}$)₂, =N-OH, =N-O-C₁- C_4 -alkyl, =N-O-C₃- C_4 alkenyl, =N-O-C₃- C_4 alkynyl, =N-O-C₁- C_4 haloalkenyl, =N-O-benzyl and =N-O-phenyl, wherein the =N-O-benzyl and =N-O-phenyl are optionally substituted by one or more group selected from the group consisting of halogen, methyl, halomethyl; or

 R_5 is $-N = C(R_8)(R_9)$; or

 R_5 is a C_8 - C_{11} spirobicyclic system containing 0, 1 or 2 O or N atoms, wherein there are no adjacent O atoms, which is optionally substituted by one or more groups independently selected from halogen, CN, NO2, OH, SH, CHO, COOH, tri(C₁-C₆-alkyl)silyl, C₁-C₆ alkyl, ---CH(CH₃)---CH₂---CH₂---CH₃, ---CH---CH(CH₃)- $-CH_2-CH_2-CH(CH_3)-CH_3$, $-CH_2-CH_2-CH(CH_3)_2$, $-CH(CH_3)-CH(CH_3)_2$, C_1 - C_6 haloalkyl, C_3 - C_6 cycloalkyl, C_3 - C_6 halocycloalkyl, C_2 - C_6 alkenyl, C_2 - C_6 haloalkenyl, C_1 - C_6 alkoxy, C₁-C₆ haloalkoxy, C₂-C₇-alkylcarbonyl, C₂-C₇alkoxycarbonyl, C₄-C₇-al kenyloxycarbonyl, C₄-C₇alkynyloxycarbonyl, C_1 - C_6 alkylthio, C_1 - C_6 alkylsulfinyl, C_1 - C_6 alkylsulfonyl, =O, -C(=O)NH₂, $-C(=O)NH(CH_3)$, $-C(=O)N(CH_3)_2$ and -C(=S)NH₂; or

R⁵ is selected from G¹, G², G³-G⁴, G⁵, G⁶-G⁷, G⁸, G⁹, G¹⁰-G¹¹, G¹², G¹³, G¹⁴, G¹⁵ and G¹⁶;

R₆ is selected from hydrogen and SH;

R₇ is hydrogen, halogen or C₁-C₄ alkyl;

R₈ and R₉, independently from each other, are hydrogen, halogen, cyano, C₁-C₁₂ alkyl, C₂-C₁₂ alkenyl, C₂-C₁₂ alkynyl, C_1 - C_{12} alkoxy, formyl, C_2 - C_{12} alkylcarbonyl, C₃-C₁₂ alkenylcarbonyl, carboxy, C₂-C₁₂ alkoxycarbonyl and C_4 - C_{12} alkenyloxycarbonyl, or C_1 - C_{12} alkyl, C_2 - C_{12} alkenyl, C_2 - C_{12} alkenyl, C_1 - C_{12} alkoxy, C_2 - C_{12} alkylcarbonyl, C3-C12 alkenylcarbonyl, C2-C12 alkoxycarbonyl and C_4 - C_{12} alkenyloxycarbonyl mono- to polysubstituted by substituents independently selected from the group consisting of halogen, cyano, nitro, hydroxy, mercapto, C₁-C₆ alkyl, C₁-C₆ haloalkyl, C₁-C₆ alkoxy, C_1 - C_6 haloalkoxy, C_1 - C_6 alkylthio, C_1 - C_6 alkylsulfinyl and $C_1\text{-}C_6$ alkylsulfonyl; or R_8 and R_9 together from a C2-C8 alkylene bridge which may optionally be mono- to polysubstituted by substituents independently selected from the group consisting of halogen, cyano, C_1 - C_6 alkyl and C_1 - C_6 haloalkyl; or R_8 and R_9 , independently from each other, are the groups A-, A-O- or $A-(C_1-C_6alkyl)-;$

R₁₀ is H, C₁-C₄ alkyl, C₂-C₄ alkenyl or C₁-C₄ haloalkyl;

R₁₃ is hydrogen, C₁-C₆ alkyl, C₁-C₆ haloalkyl, C₃-C₆ alkenyl, C₃-C₆ haloalkenyl, C₃-C₆ alkynyl, C₃-C₈ cycloalkyl, C₃-C₈ halocycloalkyl, phenyl and benzyl, or is phenyl and benzyl mono- to polysubstituted by halogen, cyano, hydroxy, C₁-C₆ alkyl, C₁-C₆ haloalkyl or C₁-C₆ alkoxy;

 R_{14} and R_{15} , independently of each other, are $C_1\text{-}C_6$ alkyl, $C_3\text{-}C_8$ cycloalkyl, $C_1\text{-}C_6$ haloalkyl, $C_3\text{-}C_8$ halocycloalkyl, $C_2\text{-}C_6$ alkenyl, $C_2\text{-}C_6$ haloalkenyl, $C_2\text{-}C_6$ alkynyl, benzyl or phenyl, or benzyl or phenyl independently of each other, substituted by substituents selected from the group consisting of halogen, cyano, hydroxy, $C_1\text{-}C_6$ alkyl, $C_1\text{-}C_6$ haloalkyl and $C_1\text{-}C_6$ alkoxy;

 R_{51} , R_{52} , R_{53} , independently of each other, are halogen, cyano, C_1 - C_6 alkyl, C_2 - C_6 alkenyl, C_3 - C_8 cycloalkelyl, C_5 - C_8 cycloalkenyl, C_2 - C_6 alkynyl, C_1 - C_6 alkoxy, benzyl or phenyl;

 $R_{54},R_{55},R_{56},$ independently of each other, are $C_1\text{-}C_6$ alkyl, $C_3\text{-}C_6$ alkenyl, $C_3\text{-}C_8$ cycloalkyl, $C_3\text{-}C_6$ alkynyl, benzyl or phenyl:

R₅₇ and R₅₈, independently of each other, are hydrogen, C₁-C₆ alkyl, C₁-C₆ haloalkyl, C₃-C₆ alkenyl, C₃-C₆ haloalkenyl, C₃-C₆ alkynyl, C₃-C₈ cycloalkyl, C₃-C₈ halocycloalkyl, phenyl or benzyl, where phenyl or benzyl for their part may be mono- to polysubstituted on the phenyl ring by substituents independently selected from the group consisting of halogen, cyano, hydroxy, C₁-C₆ alkyl, C₁-C₆ haloalkyl and C₁-C₆ alkoxy, or R₅₇ and R₅₈ together with their interconnecting nitrogen atom are aziridino, azetidino, pyrazolino, pyrazolidino, pyrrolino, pyrrolidino, imidazolino, imidazolidino, triazolino, tetrazolino, piperazino, piperidino, morpholino, thiomorpholino, each of which, in turn, may be mono- or polysubstituted by substituents selected from the group consisting of methyl, halogen, cyano;

 $\begin{array}{lll} R_{59} \ is \ hydrogen, C_1-C_6 \ alkyl, C_1-C_6 \ haloalkyl, C_3-C_6 \ alk-enyl, C_3-C_6 \ haloalkenyl, C_3-C_6 \ alkynyl, C_3-C_8 \ cycloalkyl, C_3-C_8 \ halocycloalkyl, benzyl \ and \ phenyl, and \ benzyl \ and \ phenyl \ mono- \ to \ polysubstituted \ by \ halogen, cyano, hydroxy, C_1-C_6 \ alkyl, C_1-C_6 \ haloalkyl \ or C_1-C_6 \ alkoxy; \\ \end{array}$

 R_{60} is hydrogen, $C_1\text{-}C_6$ alkyl, $C_3\text{-}C_8$ cycloalkyl, $C_1\text{-}C_6$ haloalkyl, $C_3\text{-}C_8$ halocycloalkyl, $C_2\text{-}C_6$ alkenyl, $C_2\text{-}C_6$ haloalkenyl, $C_2\text{-}C_6$ alkynyl, benzyl or phenyl, or benzyl or phenyl mono- to polysubstituted by substituents independently selected from the group consisting of halogen, cyano, hydroxy, $C_1\text{-}C_6$ alkyl, $C_1\text{-}C_6$ haloalkyl and $C_1\text{-}C_6$ alkoxy;

 R_{62} is hydrogen, $C_1\text{-}C_6$ alkyl, $C_3\text{-}C_8$ cycloalkyl, $C_1\text{-}C_6$ haloalkyl, $C_3\text{-}C_8$ halocycloalkyl, $C_3\text{-}C_6$ alkenyl, $C_3\text{-}C_6$ alkenyl, or benzyl or phenyl mono- to polysubstituted by substituents independently selected from the group consisting of halogen, cyano, hydroxy, $C_1\text{-}C_6$ alkyl, $C_1\text{-}C_6$ haloalkyl and $C_1\text{-}C_6$ alkoxy;

G¹ is a C₈-C₁₀ fused bicyclic ring system which may be saturated or comprise one carbon-carbon double bond 40 and is optionally substituted by one or more groups independently selected from hydroxyl, C₁-C₄ alkyl, C₁-C₄ alkoxy, halogen, C₁-C₄ haloalkyl and cyano;

G² is C₃-C₆ cycloalkenyl, which is optionally substituted by one or more groups independently selected from 45 halogen, CN, NO₂, OH, SH, CHO, COOH, tri(C₁-C₆-alkyl)silyl, ethyl, n-propyl, iso-propyl, n-butyl, iso-butyl, sec-butyl, tert-butyl, n-pentyl, —CH(CH₃)—CH₂—CH₂—CH₃, —CH—CH(CH₃)—CH₂—CH₃, —CH—CH(CH₃)—CH₂—CH(CH₃)₂, 50—CH(CH₃)—CH(CH₃)₂, C₂-C₆ haloalkyl, C₃-C₆ cycloalkyl, C₃-C₆ halocycloalkyl, C₂-C₆ alkenyl, C₂-C₆ haloalkenyl, C₁-C₆ alkoxy, C₁-C₆ haloalkoxy, C₂-C₇ alkylcarbonyl, C₄-C₇ alkoxycarbonyl, C₄-C₇ alkenyloxycarbonyl, C₁-C₆ alkylsulfinyl, C₁-C₆ alkylsulfonyl, —C(—O)NH₂, —C(—O)NH(CH₃), —C(—O)N (CH₃)₂ and —C(—S)NH₂;

G³ is phenyl, which is optionally substituted by one or more groups independently selected from hydroxyl, 60 C₁-C₄ alkyl, C₁-C₄ haloalkyl, C₂-C₄ alkenyl, C₂-C₄ alkynyl, C₁-C₄ alkoxy, halogen and cyano, wherein the alkyl groups are optionally substituted by one or more halogen;

G⁴ is C₃-C₁₂ cycloalkyl which is optionally substituted by 65 one or more groups independently selected from hydroxyl, C₁-C₄ alkyl, C₂-C₄ alkenyl, C₂-C₄ alkynyl,

C₁-C₄ alkoxy, halogen and cyano, wherein the alkyl groups are optionally substituted by one or more halogen;

G⁵ is C₃-C₇ cycloalkyl which is optionally substituted by one or more groups independently selected from halogen, CN, NO₂, OH, SH, CHO, COOH, tri(C₁-C₆-alkyl) silyl, ethyl, n-propyl, iso-propyl, n-butyl, iso-butyl, secbutyl, tert-butyl, n-pentyl, —CH₂(CH₃)—CH₂—CH₂—CH₃,—CH—CH(CH₃)—CH₂—CH₂—CH(CH₃)—CH₂—CH₂—CH(CH₃)—CH₂—CH₂—CH(CH₃)—CH₃, —CH₂—CH₂—CH(CH₃)₂, C₂-C₆ haloalkyl, C₃-C₆ cycloalkyl, C₃-C₆ halocycloalkyl, C₂-C₆ alkenyl, C₂-C₆ haloalkoxy, C₃-C₆-alkenyloxy, C₂-C₇ alkoxycarbonyl, C₄-C₇ alkoxycarbonyl, C₄-C₇ alkoxycarbonyl, C₄-C₇ alkoxycarbonyl, C₁-C₆ alkylthio, C₁-C₆ alkylsulfinyl, C₁-C₆ alkylsulfonyl, phenoxy, —C(—O)NH₂, —C(—O)NH₂,

G⁶ is phenyl, which must be substituted by at least one fluorine and is optionally further substituted by one or more groups independently selected from halogen, CN, NO₂, OH, SH, CHO, C(=O)NH₂, C(=O)NH(CH₃), C(=O)N(CH₃)₂, C(=S)NH₂, C(=S)NH(CH₃), C(=S)N(CH₃)₂, SO₂NH₂, SO₂NH(CH₃), SO₂N(CH₃)₂, C₁-C₆ alkyl, C₁-C₆ haloalkyl, C₃-C₆ cycloalkyl, C₂-C₆ alkenyl, C₂-C₆ haloalkenyl, C₂-C₆ alkynyl, C₁-C₆ alkoxy, C₁-C₆ haloalkoxy, C₃-C₆ cycloalkoxy, C₃-C₆ haloalkenyloxy, C₃-C₆ alkynyloxy, C₃-C₆ cycloalkoxy, C₃-C₆ haloalkenyloxy, C₃-C₆ alkynyloxy, C₃-C₆ haloalkylthio, C₁-C₆ alkylsulfinyl, C₁-C₆ alkylsulfinyl, C₁-C₆ haloalkylsulfinyl, C₁-C₆ haloalkylsulfonyl and C₁-C₆ haloalkylsulfonyl;

G⁷ is methylene;

G8 is

$$R^{14'}$$
 $R^{11'}$
 $R^{3'}$
 $R^{2'}$
 $R^{13'}$
 $R^{12'}$
 $R^{5'}$
 $R^{4'}$

G9 is

G¹¹º is phenyl, which is optionally substituted by one or more groups independently selected from halogen, CN, NO₂, OH, SH, CHO, C(=O)NH₂, C(=O)NH(CH₃), C(=O)N(CH₃)₂, C(=S)NH₂, C(=S)NH(CH₃), C(=S)N(CH₃)₂, SO₂NH₂, SO₂NH(CH₃), SO₂N(CH₃)₂, C₁-C₆alkyl, C₁-C₆ haloalkyl, C₃-C₆ cycloalkyl, C₂-C₆ alkenyl, C₂-C₆ haloalkenyl, C₂-C₆ alkynyl, C₁-C₆ alkoxy, C₁-C₆ haloalkoxy, C₃-C₆alkynyloxy, C₃-C₆ cycloalkoxy, C₃-C₆ haloalkenyloxy, C₃-C₆alkynyloxy, C₃-C₆ cycloalkoxy, C₃-C₆ haloalkylthio, C₁-C₆ alkylsulfinyl, C₁-C₆ haloalkylsulfinyl,

 $\begin{array}{l} C_1\text{-}C_6 \text{ alkylsulfonyl}, \ C_1\text{-}C_6 \ \text{haloalkylsulfonyl}, \ \text{phenyl}, \\ \text{2-phenyl-ethynyl} \ \text{and} \ \text{2-phenyl-ethyl}; \end{array}$

G¹¹ is methylene substituted by at least one group independently selected from C₁-C₄ alkyl, C₁-C₄ haloalkyl, CN, C₁-C₄ alkoxy and C₁-C₄ haloalkoxy; G¹² is

$$R^{29'}$$
 $R^{28'}$
 $R^{27'}$
 $R^{26'}$
 $R^{31'}$
 $R^{35'}$;
 $R^{34'}$
 $R^{34'}$

 $\rm G^{13}$ is a $\rm C_8$ - $\rm C_{11}$ spirobicyclic system containing 0, 1 or 2 O or N atoms, wherein there are no adjacent O atoms, which is optionally substituted by one or more groups independently selected from halogen, CN, NO₂, OH, SH, CHO, COOH, tri(C₁-C₆-alkyl)silyl, C₁-C₆ alkyl, C₁-C₆ haloalkyl, C₃-C₆ cycloalkyl, C₃-C₆ haloaycloalkyl, C₂-C₆ haloalkenyl, C₁-C₆alkoxy, C₁-C₆ haloalkoxy, C₂-C₇ alkylearbonyl, C₂-C₇ alkoxy carbonyl, C₄-C₇ alkenyloxycarbonyl, C₄-C₇ alkynyloxycarbonyl, C₄-C₇ alkynyloxycarbonyl, C₁-C₆ alkylsulfinyl, C₁-C₆ alkylsulfonyl, =O, -C(=O)NH₂, -C(=O)NH(CH₃), -C(=O)N(CH₃)₂ and -C(=S) NH₂; G¹⁴ is

 G^{15} is

G¹⁶ is

$$G^{17} \xrightarrow{R^{67'}} R^{65'} R^{63'} R^{61'} \\ R^{68'} R^{66'} R^{64'} R^{62'} \\ \end{pmatrix}_{t} \#;$$

G¹⁷ is a five- to six-membered monocyclic heteroaromatic ring system which can contain 1 to 4 members selected from the group consisting of N, N(R^{69'}), O and S, it not being possible for each ring system to contain 65 —O—O—, —S—S— and —O—S— fragments, and it being possible for the five- to six-membered ring system

to be itself mono- or polysubstituted by groups selected from the group consisting of halogen, CN, NO₂, OH, SH, CHO, C(=O)NH₂, C(=O)NH(CH₃), C(=O)N (CH₃)₂, C(=S)NH₂, C(=S)NH(CH₃), C(=S) N(CH₃)₂, SO₂NH₂, SO₂NH(CH₃), SO₂N(CH₃)₂, C₁-C₆ alkyl, C₁-C₆ haloalkyl, C₃-C₆ cycloalkyl, C₂-C₆ alkenyl, C₂-C₆ haloalkenyl, C₂-C₆ alkynyl, C₂-C₆ haloalkenyl, C₃-C₆ cycloalkoxy, C₃-C₆ alkenyloxy, C₃-C₆ haloalkenyloxy, C₃-C₆ alkynyloxy, C₃-C₆ cycloalkoxy, C₃-C₆ haloalkenyloxy, C₃-C₆ alkylsulfinyl, C₁-C₆ haloalkylthio, C₁-C₆ alkylsulfinyl, C₁-C₆ haloalkylsulfinyl, C₁-C₆ haloalkylsulfinyl, C₁-C₆ haloalkylsulfonyl;

R^{1'} is selected from the group consisting of hydrogen fluorine C₁-C₄ alkyl, C₁-C₄ haloalkyl;

rine C_1 - C_4 alkyl, C_1 - C_4 haloalkyl; $R^{2'}$, $R^{3'}$, $R^{4'}$ and $R^{5'}$ are selected, independently of each other, from the group consisting of hydrogen, fluorine, C_1 - C_4 alkyl, C_1 - C_4 haloalkyl, C_1 - C_4 alkoxy and C_1 - C_4 alkylthio;

R^{11'}, Ř^{12'}, R^{13'} and R^{14'} are selected, independently of each other, from the group consisting of hydrogen, halogen, CN, NO₂, OH, SH, CHO, C(=O)NH₂, C(=O)NH (CH₃), C(=O)N(CH₃)₂, C(=S)NH₂, C(=S)NH(CH₃), C(=S)N(CH₃)₂, SO₂NH₂, SO₂NH(CH₃), SO₂ N(CH₃)₂, C₁-C₆ alkyl, C₁-C₆ haloalkyl, C₃-C₆ cycloalkyl, C₂-C₆ alkenyl, C₂-C₆ haloalkenyl, C₂-C₆alkynyl, C₂-C₆ haloalkynyl, C₁-C₆alkoxy, C₁-C₆ haloalkoxy, phenyl, C₃-C₆ alkenyloxy, C₃-C₆ haloalkenyl, C₃-C₆ alkynyloxy, C₃-C₆ cycloalkoxy, C₃-C₆ haloalkynyl, C₁-C₆alkylthio, C₁-C₆ haloalkylthio, C₁-C₆alkylthio, C₁-C₆alkylthio, C₁-C₆alkylsulfinyl, C₁-C₆ haloalkylsulfinyl, C₁-C₆alkylsulfonyl and C₁-C₆ haloalkylsulfonyl:

nyl, C₁-C₆alkylsulfonyl and C₁-C₆ haloalkylsulfonyl; R¹⁵ and R¹⁶ are independently selected from the group consisting of hydrogen, halogen, cyano, C₁-C₄ alkyl, C₁-C₄ haloalkyl and C₁-C₄ cycloalkyl

C₁-C₄ haloalkyl and C₃-C₆ cycloalkyl; each R¹⁷, R¹⁸, R¹⁹, R²⁰, R²¹ and R²² are selected independently of each other, from the group consisting of hydrogen, halogen, cyano, C₁-C₄ alkyl, C₁-C₄ haloalkyl, C₁-C₄ alkoxy, C₁-C₄ haloalkoxy and C₃-C₆ cycloalkyl; R²³, R²⁴ and R²⁵ are independently selected from the

R^{23'}, R^{24'} and R^{25'} are independently selected from the group consisting of hydrogen, halogen, cyano, C₁-C₄ alkyl, C₁-C₄ haloalkyl, C₁-C₄ alkoxy, C₃-C₆ cycloalkyl, C₃-C₆ halocycloalkyl and C₁-C₄ alkylthio;

 $R^{26'}$ is $C(R^{36'})_2$, N—OH, N—O— C_1 - C_4 -alkyl, N—O— C_2 - C_4 -alkenyl, N—O— C_2 - C_4 alkynyl, N—O— C_1 - C_4 haloalkyl N—O— C_2 - C_4 haloalkenyl, N—O-benzyl, N—O-phenyl, N—O-halophenyl, O wherein the O-benzyl and O-Denzyl may be substituted by one or more groups independently selected from the group consisting of halogen, methyl and halomethyl;

sisting of halogen, methyl and halomethyl; R^{27'}, R^{28'}, R^{29'}, R^{30'}, R^{31'}, R^{32'}, R^{33'}, R^{34'} and R^{35'} are each independently selected from the group consisting of hydrogen, hydroxyl, C₁-C₄ alkyl, C₂-C₄ alkenyl, C₂-C₄ alkynyl, C₁-C₄ alkoxy, halogen, C₁-C₄ haloalkyl, C₂-C₄ haloalkenyl, cyano, benzyl and phenyl;

or R^{28'} and R^{29'} together with the two carbon atoms to which they are attached form a double bond;

each R³⁶ is independently selected from hydrogen, halogen and C₁-C₄ alkyl; R³⁷ and R³⁸ are selected in decision.

R³⁷ and R³⁸ are selected independently of each other from the group consisting of hydrogen, halogen, cyano, C₁-C₄ alkyl and C₂-C₄ haloalkyl:

alkyl and C_1 - C_4 haloalkyl; $R^{39'}$, $R^{40'}$, $R^{41'}$, $R^{42'}$, $R^{43'}$ and $R^{44'}$ are selected independently of each other from the group consisting of hydrogen, halogen, hydroxy, cyano, C_1 - C_4 alkyl, C_1 - C_4 haloalkyl, C_1 - C_4 alkoxy, C_1 - C_4 haloalkoxy and C_1 - C_4 alkylthio;

731

R^{45′}, R^{46′}, R^{47′}, R^{48′} and R^{49′} are selected, independently of each other, from the group consisting of hydrogen, halogen, CN, NO₂, OH, SH, CHO, C(⇒O)NH₂₁ C(⇒O)NH (CH₃), C(⇒O)N(CH₃)₂, C(⇒S)NH₂, C(⇒S)NH(CH₃), C(⇒S)N(CH₃)₂, SO₂NH₂, SO₂NH(CH₃), SO₂ N(CH₃)₂, C₁-C₆ alkyl, C₁-C₆ haloalkyl, C₃-C₆ cycloalkyl, C₂-C₆ alkenyl, C₂-C₆ haloalkenyl, C₂-C₆ alkynyl, C₁-C₆ alkoxy, C₁-C₆ haloalkoxy, C₃-C₆ alkenyloxy, C₃-C₆ alkyloxy, C₃-C₆ alkyloxy, C₃-C₆ haloalkenyloxy, C₃-C₆ alkyloxy, C₃-C₆ alkylthio, C₁-C₆ haloalkylthio, C₁-C₆ alkylsulfinyl, C₁-C₆ haloalkylsulfinyl, C₁-C₆ haloalkylsulfinyl, C₁-C₆ haloalkylsulfonyl;

R⁵⁰ is selected from the group consisting of hydrogen

fluorine C_1 - C_4 alkyl, C_1 - C_4 haloalkyl; $R^{51'}$, $R^{52'}$, $R^{53'}$, $R^{54'}$, $R^{55'}$ and $R^{56'}$ are selected, independently of each other, from the group consisting of hydrogen fluorine C_1 - C_4 alkyl, C_1 - C_4 haloalkyl, C_2 - C_4 alkoxy and C_4 - C_4 alkylthio:

and C₁-C₄ alkylthio;

R^{57'}, R^{58'}, R^{59'} and R^{60'} are selected, independently of each 20 other, from the group consisting of hydrogen, halogen, CN, NO₂, OH, SH, CHO, C(=O)NH₂, C(=O)NH (CH₃), C(=O)N(CH₃)₂, C(=S)NH₂, C(=S)NH(CH₃), C(=S)N(CH₃)₂, SO₂NH₂, SO₂NH(CH₃), SO₂ N(CH₃)₂, C₁-C₆ alkyl, C₁-C₆ haloalkyl, C₃-C₆ 25 cycloalkyl, C₂-C₆ alkenyl, C₂-C₆ haloalkenyl, C₂-C₆ alkynyl, C₂-C₆ haloalkynyl, C₂-C₆ haloalkoxy, phenyl, C₃-C₆ alkenyloxy, C₃-C₆ alkoxy, C₂-C₆ cycloalkoxy, C₃-C₆ halocycloalkoxy, benzyloxy, C₁-C₆ oglikylthio, C₁-C₆ haloalkylthio, C₁-C₆ alkylsulfinyl, C₁-C₆ haloalkylsulfinyl, C₁-C₆ alkylsulfonyl;

provided that at least one of R⁵⁷, R⁵⁸, R⁵⁹ and R⁶⁰ is not hydrogen;

R⁶¹ and R⁶² are selected independently of each other from the group consisting of hydrogen fluorine cyano C₁-C₄ alkyl and C₁-C₄ haloalkyl:

alkyl and C_1 - C_4 haloalkyl; $R^{63'}$, $R^{64'}$, $R^{65'}$, $R^{66'}$, $R^{67'}$ and $R^{68'}$ are selected independently of each other from the group consisting of hydrogen, halogen, hydroxy, cyano, C_1 - C_4 alkyl, C_1 - C_4 haloalkyl, C_1 - C_4 alkoxy, C_1 - C_4 alkoxy and C_1 - C_4 alkylthio:

 $C_1\text{-}C_4$ alkylthio; R^{69} is selected from hydrogen $C_1\text{-}C_4$ alkyl, $C_3\text{-}C_4$ alkenyl and $C_1\text{-}C_4$ alkylcarboxy;

n is 0 or 1;

p and q are independently selected from 0 and 1; and r, s and t are independently selected from 0 and 1;

or an agronomically acceptable salt/metallic complex/metalloidic complex/isomer/structural isomer/stereo-isomer/diastereoisomer/enantiomer/tautomer/N-oxide thereof;

and

component B) is a strobilurin fungicide, a sterol biosynthesis inhibitor, a triazole fungicide, a pro-triazole fungicide, a DMI fungicide, a SDHI fungicide, or a compound selected from the group consisting of Chlorothalonil, Fludioxonil, Cyprodinil, Mandipropamid, Fluazinam, Procymedone, Carbendazim, Abamectin, Clothianidin, Emamectin benzoate, Imidacloprid, 60 Tefluthrin, Mefenoxam, Orocymedone, Thiamethoxam, Lambda-cyhalothrin, Gamma-cyhalothrin, Profenofos, Lufenuron, Diflubenzuron, Cypermethrin, Novaluron, Bifenthrin, Methomyl, Chlopyrifos, Methamidophos, Endosulfan, Betacyfluthrin, Triflumuron, Teflubenzuron, SulcotrioneAcephat, Glyphosate, Glufosinate, Mesotrione, Tembotrione, Sulcotrione, Auxins, Trinex-

732

apac-ethyl, Prohexadione-Ca, Paclobutrazol, Aciben-zolar-S-methyl, Methyl-Jasmonate, Cis-Jasmone, Manganese, Cyflufenamid, Tebufloquin and Copper.

2. A fungicidal composition according to claim 1, wherein component A) is a compound of formula (I) wherein, R_1 and R_2 are each independently selected from hydrogen, C_1 - C_4 alkyl, C_3 - C_4 alkenyl and C_3 - C_4 alkynyl;

or R₁ and R₂ together with the nitrogen atom to which they are connected form pyrrolidine or piperidine;

 R_3 represents hydrogen, halogen, cyano, mercapto, hydroxy, $C_1\text{-}C_4$ alkyl, $C_1\text{-}C_4$ haloalkyl, $C_2\text{-}C_4$ alkenyl, $C_2\text{-}C_4$ haloalkenyl, $C_2\text{-}C_4$ alkynyl, $C_1\text{-}C_4$ alkoxy, $C_1\text{-}C_4$ haloalkoxy, $C_3\text{-}C_6$ cycloalkyl, amino, $C_1\text{-}C_2$ alkylamino, di($C_1\text{-}C_6$ alkyl)amino, pyrrolidino, imidazolino, triazolino, tetrazolino, formyl, $C_2\text{-}C_5$ alkylcarbonyl, $C_2\text{-}C_5$ haloalkylcarbonyl, $C_1\text{-}C_6$ alkylthio, $C_1\text{-}C_6$ alkylsulfonyl, $C_1\text{-}C_6$ haloalkylsulfinyl, $C_1\text{-}C_6$ haloalkylsulfonyl or $C_1\text{-}C_6$ hydroxyalkyl;

R₄ represents hydrogen, halogen, cyano, amino, C₁-C₄ alkyl, C₁-C₄ haloalkyl, C₃-C₆ cycloalkyl, C₂-C₄ alkenyl, C₂-C₄ alkynyl, C₁-C₄ alkoxy, C₁-C₄ haloalkoxy, C₁-C₄ alkylthio, C₁-C₄ alkylsulfinyl, C₁-C₄ alkylsulfonyl, methylamino or dimethylamino;

 R_5 represents hydrogen, $C_1\hbox{-} C_{12}$ alkylsulfonyl, $C_1\hbox{-} C_{12}$ alkyl, $C_3\hbox{-} C_{12}$ alkenyl, $C_3\hbox{-} C_{12}$ alkynyl, or is $C_1\hbox{-} C_{12}$ alkyl, $C_2\hbox{-} C_{12}$ alkenyl, $C_2\hbox{-} C_{12}$ alkynyl mono- to polysubstituted by substituents independently selected from the group consisting of halogen, cyano, nitro, hydroxy, mercapto, azido, formyl, $C_2\hbox{-} C_7$ alkylcarbonyl, $C_2\hbox{-} C_7$ haloalkylcarbonyl, $C_1\hbox{-} C_6$ alkyl, $C_1\hbox{-} C_6$ haloalkyl, $C_1\hbox{-} C_6$ alkylthio, $C_1\hbox{-} C_6$ alkylsulfinyl and $C_1\hbox{-} C_6$ alkylsulfonyl; or

 $\begin{array}{llll} R_5 & is & (R_{51})(R_{52})(R_{53})Si - , & (R_{51})(R_{52})(R_{53})Si - (C_1 - C_{12}alkyl) - , & (R_{51})(R_{52})(R_{53})Si - (C_3 - C_8 cycloalkyl) - , \\ & (R_{54}O)(R_{55}O)(R_{56}O)Si - , & (R_{54}O)(R_{55}O)(R_{56}O)Si - \\ & (C_1 - C_{12}alkyl) - & or & (R_{54}O)(R_{55}O)(R_{56}O)S(C_3 - C_8 cycloalkyl) - ; \\ & (C_8 cycloalkyl) - ; & (C_8 cycloalkyl) - ; & (C_8 cycloalkyl) - ; \\ & (C_8 cycloalkyl) - & (C_8 cycloalkyl) - ; & (C_8 cycloalkyl) - ; \\ & (C_8 cycloalkyl) - ; & (C_8 cycloalkyl) - ; & (C_8 cycloalkyl) - ; \\ & (C_8 cycloalkyl) - ; & (C_8 cycloalkyl) - ; & (C_8 cycloalkyl) - ; \\ & (C_8 cycloalkyl) - ; & (C_8 cycloalkyl) - ; \\ & (C_8 cycloalkyl) - ; & (C_8 cycloalkyl) - ; \\ & (C_8 cycloalkyl) - ; & (C_8 cycloalkyl) - ; \\ & (C_8 cycloalkyl) - ; & (C_8 cycloalkyl) - ; \\ & (C_8 cycloalkyl) - ; & (C_8 cycloalkyl) - ; \\ & (C_8 cycloalkyl) - ; & (C_8 cycloalkyl) - ; \\ & (C_8 cycloalkyl) - ; & (C_8 cycloalkyl) - ; \\ & (C_8 cycloalkyl) - ; & (C_8 cycloalkyl) - ; \\ & (C_8 cycloalkyl) - ; & (C_8 cycloalkyl) - ; \\ & (C_8 cycloalkyl) - ; & (C_8 cycloalkyl) - ; \\ & (C_8 cycloalkyl) - ; & (C_8 cycloalkyl) - ; \\ & (C_8 cycloalkyl) - ; & (C_8 cycloalkyl) - ; \\ & (C_8 cycloalkyl) - ; & (C_8 cycloalkyl) - ; \\ & (C_8 cycloalkyl) - ; & (C_8 cycloalkyl) - ; \\ & (C_8 cycloalkyl) - ; & (C_8 cycloalkyl) - ; \\ & (C_8 cycloalkyl) - ; \\ & (C_8 cycloalkyl) - ; & (C_8 cycloalkyl) - ; \\ & (C_8 cycloalkyl)$

 R_5 is C_1 - C_6 alkyl-B— C_1 - C_{12} alkyl-, C_2 - C_6 alkenyl-B— C_1 - C_2 - C_6 alkynyl-B— C_1 - C_{12} alkyl-, C_{12} alkyl-, C_3 - C_8 cycloalkyl-B— C_1 - C_{12} alkyl-, benzyl-B—C₁- C_{12} alkyl-, phenyl-B— C_1 - C_{12} alkyl-, C_1 - C_6 alkyl-B-C₂-C₆alkenyl-B—C₂-C₁₂alkenyl-, C_2 - C_{12} alkenyl-, $\begin{array}{lll} C_2\text{-}C_6\text{alkynyl-}B\text{--}C_2\text{-}C_{12}\text{alkenyl-}, & C_3\text{-}C_8\text{cycloalkyl-}B\text{--}C_2\text{-}C_{12}\text{alkenyl-}, & \text{benzyl-}B\text{--}C_2\text{-}C_{12}\text{alkenyl-}, & \text{phe-}\\ \end{array}$ nyl-B—C₂-C₁₂alkenyl-, C_1 - C_6 alkyl-B— C_2 -C₁₂alkynyl-, C₂-C₆alkenyl-B—C₂-C₁₂alkynyl-, C₂-C₆alkynyl-B—C₂-C₁₂alkynyl-, C₃-C₈cycloalkyl- $B - C_2 - C_{12} alkynyl-, \ benzyl-B - C_2 - C_{12} alkynyl-, \ phe$ nyl-B-C₂-C₁₂alkynyl-, C_1 - C_6 alkyl-B— C_3 - $\begin{array}{lll} C_8 cycloalkyl-, & C_2 - C_6 alkenyl-B - C_3 - C_8 cycloalkyl-, \\ C_2 - C_6 alkynyl-B - C_3 - C_8 cycloalkyl-, & C_3 - C_8 cycloalkyl- \end{array}$ B—C₃-C₈cycloalkyl-, benzyl-B—C₃-C₁₂cycloalkyl- or phenyl-B—C₃-C₁₂cycloalkyl-, wherein the group B is —C(=O)—, selected from —C(=S)—, $-C(=NOR_{59})-$, $-C(R_{60})=NO--, -ON=C$ -S(=O)-, -S(=O)2-, -S(=O) $(=NR_{13})-, -S(=O)(R_{14})=N-, -N=S(=O)$ (R_{14}) —, $-N(R_{62})$ —C(=O)—, -C(=O)— $N(R_{62})$ —, $-N(R_{62})$ — SO_2 — or — SO_2 — $N(R_{62})$ —; or

 $\begin{array}{lll} R_5 \text{ is } C_1\text{-}C_6\text{alkyl-}\bar{B}\text{--}C_1\text{-}C_{12}\text{alkyl-}, C_2\text{-}C_6\text{alkenyl-}B\text{--}C_1\text{--}\\ C_{12}\text{alkyl-}, & C_2\text{-}C_6\text{alkynyl-}B\text{--}C_1\text{--}C_{12}\text{alkyl-},\\ C_3\text{-}C_8\text{cycloalkyl-}B\text{--}C_1\text{-}C_{12}\text{alkyl-}, & \text{benzyl-}B\text{--}C_1\text{--}\\ C_{12}\text{alkyl-}, & \text{phenyl-}B\text{--}C_1\text{--}C_{12}\text{alkyl-}, & C_1\text{--}C_6\text{alkyl-}B\text{---}\\ C_2\text{-}C_{12}\text{alkenyl-}, & C_2\text{-}C_6\text{alkenyl-}B\text{---}C_2\text{--}C_{12}\text{alkenyl-},\\ C_2\text{-}C_6\text{alkynyl-}B\text{---}C_2\text{--}C_{12}\text{alkenyl-}, & C_3\text{--}C_8\text{cycloalkyl-}\\ \end{array}$

 $B-C_2-C_{12}$ alkenyl-, benzyl- $B-C_2-C_{12}$ alkenyl-, phenyl-B—C₂-C₁₂alkenyl-, C₁-C₆alkyl-B—C₂- C_2 - C_6 alkenyl-B— C_2 - C_{12} alkynyl-, C₁₂alkynyl-, $C_2\hbox{-} C_6 alkynyl\hbox{-} B - C_2\hbox{-} C_{12} alkynyl\hbox{-}, \quad C_3\hbox{-} C_8 cycloalkyl\hbox{-}$ B—C₂-C₁₂alkynyl-, benzyl-B—C₂-C₁₂alkynyl-, phe- ⁵ nyl-B— C_2 - C_{12} alkynyl-, C₁-C₆alkyl-B—C₃-C₂-C₆alkenyl-B—C₃-C₈cycloalkyl-, C₈cycloalkyl-, C_2 - C_6 alkynyl-B— C_3 - C_8 cycloalkyl-, C_3 - C_8 cycloalkyl-phenyl-B—C₃-C₁₂cycloalkyl-, all of which, in turn, are mono- to polysubstituted by substituents independently selected from the group consisting of halogen, cyano, hydroxy, mercapto, C₁-C₆ haloalkyl, C₁-C₆ alkoxy, formyl, C_2 - C_6 alkylcarbonyl, C_1 - C_6 alkylthio, C_1 - C_6 $_{15}$ alkylsulfinyl and C₁-C₆ alkylsulfonyl; or

 R_5 is selected from A-, A-(C₁-C₆alkyl)-, A-O—(C₁-C₆alkyl)-, A-(C₃-C₆alkenyl)-, A-O—(C₄-C₆alkenyl)-, A-(C₃-C₆-alkynyl)-, A-O—(C₄-C₆alkynyl)-, A-(C₃-C₈cycloalkyl)- and A-O—(C₃-C₈cycloalkyl)-;

A is a three- to ten-membered monocyclic or fused bicyclic ring system which can be aromatic, partially saturated or fully saturated and can contain 1 to 4 hetero atoms selected from the group consisting of nitrogen, oxygen and sulphur, it not being possible for each ring system to 25 contain —O—O—, —S—S— and —O—S— fragments, and it being possible for the three- to ten-membered ring system to be itself mono- or polysubstituted

A1) by substituents independently selected from the group consisting of

halogen, cyano, nitro, hydroxy, mercapto, nitro, azido, formyl, carboxy, =O, =S, C₁-C₆ alkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl, C₃-C₈ cycloalkyl, C₁-C₆ haloalkyl, C₂-C₆ haloalkenyl, C₂-C₆ haloalkenyl, C₂-C₆ haloalkoxy, C₃-C₈ haloalkenyl, C₃-C₆ alkoxy, C₁-C₆ haloalkoxy, C₃-C₆ alkynyloxy, C₃-C₈ cycloalkyloxy, C₃-C₈ halocycloalkyloxy, C₃-C₈ cycloalkyloxy, C₃-C₈ halocycloalkyloxy, C₃-C₈ cycloalkenyloxy, C₃-C₈ halocycloalkenyloxy, benzyl, benzyloxy, phenyl and phenoxy, where the benzyl, benzyloxy, phenyl and phenoxy, in turn, may be mono- to 40 polysubstituted by substituents independently selected from the group consisting of halogen, cyano, nitro, hydroxy, mercapto, amino, C₁-C₆ alkyl, C₁-C₆ haloalkyl, C₁-C₆ alkoxy, C₁-C₆ haloalkoxy, C₁-C₆ alkylsulfinyl and C₁-C₆ alkylsulfonyl; or 45

A3) by substituents independently selected from the group consisting of

formyl, C_2 - C_7 alkylcarbonyl, C_2 - C_7 haloalkylcarbonyl, C_3 - C_7 alkenylcarbonyl, C_3 - C_7 haloalkenylcarbonyl, C_4 - C_9 cycloalkylcarbonyl, C_2 - C_7 alkoxycarbonyl, C_4 - C_7 alkenyloxycarbonyl, C_4 - C_7 alkynyloxycarbonyl, C_4 - C_9 cycloalkoxycarbonyl and benzyloxycarbonyl, and benzyloxycarbonyl mono- to polysubstituted by substituents independently selected from the group consisting of halogen, cyano, hydroxy, C_1 - C_6 alkyl, C_1 - C_6 55 haloalkyl and C_1 - C_6 alkoxy; or

A4) by substituents independently selected from the group consisting of hydroxyl, C₁-C₄ alkyl, C₂-C₄ alkenyl, C₂-C₄ alkynyl, C₁-C₄ alkoxy, halogen, C₁-C₄ haloalkyl, C₂-C₄ haloalkenyl, cyano, benzyl, phenyl, —C(R³⁶)₂, 60 —N—OH, —N—O—C₁-C₄-alkyl, —N—O—C₃-C₄ alkenyl, —N—O—C₃-C₄ alkynyl, —N—O—C₁-C₄ haloalkyl, —N—O—C₃-C₄ haloalkenyl, —N—O-benzyl and —N—O-phenyl, wherein the —N—O-benzyl and —N—O-phenyl are optionally substituted by one or more group selected from the group consisting of halogen, methyl, halomethyl; or

 R_5 is a $C_8\text{-}C_{11}$ spirobicyclic system containing 0, 1 or 2 O, S or N atoms, wherein there are no adjacent O atoms, which is optionally substituted by one or more groups independently selected from halogen, CN, NO $_2$, OH, SH, CHO, COOH, $\text{tri}(C_1\text{-}C_6\text{-}alkyl)\text{silyl},\ C_1\text{-}C_6$ alkyl, —CH(CH $_3$)—CH $_2$ —CH $_2$ —CH $_3$, —CH—CH(CH $_3$)—CH $_2$ —CH $_3$ —CH $_2$ —CH(CH $_3$)—CH(CH $_3$)—Ch(Ch(CH $_3$)—Ch(CH)—Ch(Ch)—Ch(CH)—Ch(

 R_6 is hydrogen;

R₇ is hydrogen or C₁-C₄ alkyl.

3. A fungicidal composition according to claim 1, wherein 20 component A) is a compound of formula (I) wherein R_1 and R_2 are each independently selected from hydrogen and C_1 - C_4 alkyl;

or R₁ and R₂ together with the nitrogen atom to which they are connected form pyrrolidine or piperidine;

 R_3 represents hydrogen, halogen, cyano, $C_1\text{-}C_4$ alkyl, $C_1\text{-}C_4$ haloalkyl, $C_2\text{-}C_4$ alkenyl, $C_2\text{-}C_4$ alkynyl, $C_1\text{-}C_4$ alkoxy, $C_3\text{-}C_6$ cycloalkyl, amino, $C_1\text{-}C_2$ alkylamino, di($C_1\text{-}C_6$ alkyl)amino, pyrrolidino, imidazolino, triazolino, formyl, phenyl, $C_2\text{-}C_4$ alkylcarbonyl, $C_1\text{-}C_6$ alkylthio, $C_1\text{-}C_6$ alkylsulfinyl, $C_1\text{-}C_6$ alkylsulfonyl or $C_1\text{-}C_6$ hydroxyalkyl;

 R_4 is selected from fluorine, chlorine, bromine, C_1 - C_4 alkyl, C_1 - C_4 alkenyl, C_1 - C_4 haloalkyl, C_1 - C_4 alkoxy and C_3 - C_6 cycloalkyl;

R₅ is selected from G¹, G², G³-G⁴, G⁵, G⁶-G⁷, G⁸, G⁹, G¹⁰-G¹¹, G¹², G¹³, G¹⁴, G¹⁵ and G¹⁶;

R₆ is hydrogen;

 R_7 is selected from hydrogen and C_1 - C_4 alkyl;

G¹ is a C₈-C₁₀ fused bicyclic ring system which may be saturated or comprise one carbon-carbon double bond and is optionally substituted by one or more groups independently selected from hydroxyl, C₁-C₄ alkyl, C₁-C₄ alkoxy, halogen, C₁-C₄ haloalkyl and cyano;

G² is C₃-C₆ cycloalkenyl, which is optionally substituted by one or more groups independently selected from halogen, CN, NO₂, OH, SH, CHO, COOH, tri(C₁-C₆-alkyl)silyl, ethyl, n-propyl, iso-propyl, n-butyl, iso-butyl, sec-butyl, tert-butyl, n-pentyl, —CH(CH₃)—CH₂—CH₂—CH₃, —CH—CH(CH₃)—CH₂—CH₂—CH₂—CH(CH₃)—CH₂—CH₂—CH(CH₃), —CH₂—CH₂—CH(CH₃)₂, —CH(CH₃)—CH(CH₃)₂, C₂-C₆ haloalkyl, C₃-C₆ cycloalkyl, C₃-C₆ halocycloalkyl, C₂-C₆ alkenyl, C₂-C₆ haloalkenyl, C₁-C₆ alkoxy, C₁-C₆ haloalkoxy, C₂-Cȝ alkylcarbonyl, C₄-Cȝ alkoxycarbonyl, C₄-Cȝ alkylthio, C₁-C₆ alkylsulfinyl, C₁-C₆ alkylsulfonyl, —C(—O)NH₂, —C(—O)NH(CH₃), —C(—O)N (CH₃)₂ and —C(—S)NH₂;

G³ is phenyl, which is optionally substituted by one or more groups independently selected from hydroxyl, C₁-C₄ alkyl, C₁-C₄ haloalkyl, C₂-C₄ alkenyl, C₂-C₄ alkynyl, C₁-C₄ alkoxy, halogen and cyano, wherein the alkyl groups are optionally substituted by one or more halogen;

G⁴ is C₃-C₁₂ cycloalkyl which is optionally substituted by one or more groups independently selected from hydroxyl, C₁-C₄ alkyl, C₂-C₄ alkenyl, C₂-C₄ alkynyl, $\mathrm{C}_1\text{-}\mathrm{C}_4$ alkoxy, halogen and cyano, wherein the alkyl groups are optionally substituted by one or more halogen:

G⁵ is C₃-C₇ cycloalkyl, which is optionally substituted by one or more groups independently selected from halogen, CN, NO₂, OH, SH, CHO, COOH, tri(C₁-C₆-alkyl) silyl, ethyl, n-propyl, iso-propyl, n-butyl, iso-butyl, secbutyl, tert-butyl, n-pentyl, —CH(CH₃)—CH₂—CH₂—CH₂—CH₃, —CH—CH(CH₃)—CH₂—CH₂—CH(CH₃)—CH₃, —CH₂—CH₂—CH(CH₃)₂, —CH (CH₃)—CH(CH₃)₂, C₂-C₆ haloalkyl, C₃-C₆ cycloalkyl, C₃-C₆ halocycloalkyl, C₂-C₆ alkenyl, C₂-C₆ haloalkenyl, C₁-C₆ alkoxy, C₁-C₆ haloalkoxy, C₃-C₆-alkenyloxy, C₂-C₇ alkylcarbonyl, C₂-C₇ alkoxycarbonyl, C₄-C₇ al kenyloxycarbonyl, C₄-C₇ alkylthio, C₁-C₆ alkylsulfinyl, C₁-C₆ alkylthio, C₁-C₆ alkylsulfinyl, C₁-C₆ alkylsulfonyl, phenoxy, —C(—O)NH₂, —C(—O)NH(CH₃), —C(—O)N(CH₃)₂ and —C(—S)NH₂;

G⁶ is phenyl, which must be substituted by at least one fluorine and is optionally further substituted by one or more groups independently selected from halogen, CN, NO₂, OH, SH, CHO, C(=O)NH₂, C(=O)NH(CH₃), C(=O)N(CH₃)₂, C(=S)NH₂, C(=S)NH(CH₃), C(=S)N(CH₃)₂, SO₂NH₂, SO₂NH(CH₃), SO₂ N(CH₃)₂, C₁-C₆ alkyl, C₁-C₆ haloalkyl, C₃-C₆ cycloalkyl, C₂-C₆ alkenyl, C₂-C₆ haloalkenyl, C₂-C₆ alkynyl, C₁-C₆ haloalkynyl, C₁-C₆ alkoxy, C₁-C₆ haloalkoxy, C₃-C₆ alkenyloxy, C₃-C₆ alkoxy, C₁-C₆ alkylthio, C₁-C₆ haloalkylthio, C₁-C₆ alkylsulfinyl, C₁-C₆ haloalkylsulfinyl, C₁-C₆ haloalkylsulfinyl, C₁-C₆ haloalkylsulfonyl;

G⁷ is methylene;

G8 is

G9 is

$$R^{14'}$$
 $R^{13'}$
 $R^{12'}$
 $R^{12'}$
 $R^{12'}$
 $R^{14'}$

 G^{10} is phenyl, which is optionally substituted by one or more groups independently selected from halogen, CN, NO2, OH, SH, CHO, C(=O)NH2, C(=O)NH(CH3), C(=O)N(CH3)2, C(=S)NH2, C(=S)NH(CH3), C(=S)N(CH3)2, SO2NH2, SO2NH(CH3), SO2 M(CH3)2, C1-C6 alkyl, C1-C6 haloalkyl, C3-C6 cycloalkyl, C2-C6 alkenyl, C2-C6 haloalkenyl, C2-C6 alkynyl, C1-C6 alkoxy, C1-C6 haloalkoxy, C3-C6 cycloalkoxy, C3-C6 alkenyloxy, C3-C6 haloalkenyloxy, C3-C6 alkynyloxy, C3-C6 alkynyloxy, C3-C6 alkynyloxy, C3-C6 alkynyloxy, C3-C6 cycloalkoxy, C3-C6 haloalkenyloxy, C3-C6 alkynyloxy, C3-C6 alkylthio, C1-C6 haloalkylthio, C1-C6 alkylsulfinyl, C1-C6 haloalkylsulfinyl, C1-C6

alkylsulfonyl, C_1 - C_6 haloalkylsulfonyl, phenyl, 2-phenyl-ethynyl and 2-phenyl-ethyl;

G¹¹ is methylene substituted by at least one group independently selected from C₁-C₄ alkyl, C₁-C₄ haloalkyl, CN, C₁-C₄ alkoxy and C₁-C₄ haloalkoxy;
G¹² is

$$R^{30'}$$
 $R^{30'}$
 $R^{31'}$
 $R^{32'}$
 $R^{33'}$
 $R^{33'}$
 $R^{33'}$
 $R^{33'}$

 G^{13} is a $C_8\text{-}C_{11}$ spirobicyclic system containing 0, 1 or 2 O or N atoms, wherein there are no adjacent O atoms, which is optionally substituted by one or more groups independently selected from halogen, CN, NO $_2$, OH, SH, CHO, COOH, tri(C $_1\text{-}C_6\text{-}alkyl)$ silyl, $C_1\text{-}C_6$ alkyl, $C_1\text{-}C_6$ haloalkyl, $C_3\text{-}C_6$ cycloalkyl, $C_3\text{-}C_6$ haloacycloalkyl, $C_2\text{-}C_6$ alkenyl, $C_2\text{-}C_6$ haloalkenyl, $C_1\text{-}C_6$ alkoxy, $C_1\text{-}C_6$ alkoxy, $C_2\text{-}C_7$ alkoxycarbonyl, $C_2\text{-}C_7$ alkoxycarbonyl, $C_4\text{-}C_7$ alkenyloxycarbonyl, $C_4\text{-}C_7$ alkynyloxycarbonyl, $C_1\text{-}C_6$ alkylsulfinyl, $C_1\text{-}C_6$ alkylsulfinyl, $C_1\text{-}C_6$ alkylsulfinyl, $C_1\text{-}C_6$ alkylsulfinyl, $C_1\text{-}C_6$ alkylsulfinyl, $C_1\text{-}C_6$ alkylsulfonyl, $C_1\text{-}C_6$ alkylsulfon

G15 is

35

40

45
$$R^{57'}$$
 $R^{56'}$ $R^{55'}$ $R^{56'}$ R

 G^{16} is

$$G^{17} \xrightarrow[R^{68'}]{R^{68'}} R^{68'} R^{68'} R^{61'} \xrightarrow[R^{68'}]{H^{68'}} \#;$$

G¹⁷ is a five- to six-membered monocyclic heteroaromatic ring system which can contain 1 to 4 members selected from the group consisting of N, N(R⁶⁹), O and S, it not being possible for each ring system to contain —O—O—, —S—S— and —O—S— fragments, and it being possible for the five- to six-membered ring system

to be itself mono- or polysubstituted by groups selected from the group consisting of halogen, CN, NO₂, OH, SH, CHO, C(=O)NH₂, C(=O)NH(CH₃), C(=O)N $N(CH_3)_2$, SO_2NH_2 , $SO_2NH(CH_3)$, $SO_2N(CH_3)_2$, C_1 - C_6 5 alkyl, $\mathrm{C}_1\text{-}\mathrm{C}_6$ haloalkyl, $\mathrm{C}_3\text{-}\mathrm{C}_6$ cycloalkyl, $\mathrm{C}_2\text{-}\mathrm{C}_6$ alkenyl, $\begin{array}{c} C_2\text{-}C_6 \text{ haloalkenyl, } C_2\text{-}C_6 \text{ alkynyl, } C_2\text{-}C_6 \text{ haloalkynyl,} \\ C_1\text{-}C_6 \text{ alkoxy, } C_1\text{-}C_6 \text{ haloalkoxy, } C_3\text{-}C_6 \text{ alkenyloxy,} \\ \end{array}$ C₃-C₆ haloalkenyloxy, C₃-C₆ alkynyloxy, C₃-C₆ cycloalkoxy, C₃-C₆ halocycloalkoxy, C₁-C₆ alkylthio, 10 C_1 - C_6 haloalkylthio, C_1 - C_6 alkylsulfinyl, C_1 - C_6 haloalkylsulfinyl, C_1 - C_6 alkylsulfonyl and C_1 - C_6 haloalkylsulfonyl;

R¹ is selected from the group consisting of hydrogen,

fluorine, C_1 - C_4 alkyl, C_1 - C_4 haloalkyl; $R^{2'}$, $R^{3'}$, $R^{4'}$ and $R^{5'}$ are selected, independently of each other, from the group consisting of hydrogen, fluorine, C1-C4 alkyl, C1-C4 haloalkyl, C1-C4 alkoxy and C1-C4

R¹¹, R¹², R¹³ and R¹⁴ are selected, independently of each 20 other, from the group consisting of hydrogen, halogen, CN, NO2, OH, SH, CHO, C(=O)NH2, C(=O)NH $(CH_3), C(=O)N(CH_3)_2, C(=S)NH_2, C(=S)NH(CH_3),$ $C(=S)N(CH_3)_2$ haloalkoxy, phenyl, C3-C6 alkenyloxy, C3-C6 haloalkenyloxy, C₃-C₆ alkynyloxy, C₃-C₆ cycloalkoxy, C₃-C₆ halocycloalkoxy, benzyloxy, C₁-C₆ alkylthio, C₁-C₆ 30 haloalkylthio, C₁-C₆ alkylsulfinyl, C₁-C₆ haloalkylsulfi-

nyl, C_1 - C_6 alkylsulfonyl and C_1 - C_6 haloalkylsulfonyl; R^{15} and R^{16} are independently selected from the group consisting of hydrogen, halogen, cyano, C₁-C₄ alkyl,

 $C_1\text{-}C_4$ haloalkyl and $C_3\text{-}C_6$ cycloalkyl; each $R^{17'}$, $R^{18'}$, $R^{19'}$, $R^{20'}$, $R^{21'}$ and $R^{22'}$ are selected independently of each other, from the group consisting of hydrogen, halogen, cyano, C1-C4 alkyl, C1-C4 haloalkyl,

 C_1 - C_4 alkoxy, C_1 - C_4 haloalkoxy and C_3 - C_6 cycloalkyl; $R^{23'}$, $R^{24'}$ and $R^{25'}$ are independently selected from the 40 group consisting of hydrogen, halogen, cyano, C₁-C₄ alkyl, C₁-C₄ haloalkyl, C₁-C₄ alkoxy, C₃-C₆ cycloalkyl,

 C_3 - C_6 halocycloalkyl and C_1 - C_4 alkylthio; $R^{26'}$ is $C(R^{36'})_2$, N—OH, N—O— C_1 - C_4 -alkyl, N—O— C_2 - C_4 -alkenyl, N—O— C_2 - C_4 alkynyl, N—O— C_1 - C_4 45 haloalkyl, N—O—C₂-C₄ haloalkenyl, N—O-benzyl, N—O-phenyl, N—O-halophenyl, O wherein the N—Obenzyl and N-O-phenyl may be substituted by one or more groups independently selected from the group con-

sisting of halogen, methyl and halomethyl; $R^{27'}, R^{28'}, R^{29'}, R^{30'}, R^{31'}, R^{32'}, R^{33'}, R^{34'}$ and $R^{35'}$ are each independently selected from the group consisting of hydrogen, hydroxyl, C₁-C₄ alkyl, C₂-C₄ alkenyl, C₂-C₄ alkynyl, C₁-C₄ alkoxy, halogen, C₁-C₄ haloalkyl, C₂-C₄ haloalkenyl, cyano, benzyl and phenyl;

or $R^{28'}$ and $R^{29'}$ together with the two carbon atoms to which they are attached form a double bond;

each R^{36'} is independently selected from hydrogen, halogen and C_1 - C_4 alkyl; $R^{37'}$ and $D^{38'}$

the group consisting of hydrogen, halogen, cyano, C₁-C₄ alkyl and $C_1\text{-}C_4$ haloalkyl; $R^{39'},\,R^{40'},\,R^{41'},\,R^{42'},\,R^{43'}$ and $R^{44'}$ are selected independent

dently of each other from the group consisting of hydrogen, halogen, hydroxy, cyano, C1-C4 alkyl, C1-C4 65 haloalkyl, C₁-C₄ alkoxy, C₁-C₄ haloalkoxy and C₁-C₄ alkylthio;

R^{45'}, R^{46'}, R^{47'}, R^{48'} and R^{49'} are selected, independently of each other, from the group consisting of hydrogen, halogen, CN, NO₂, OH, SH, CHO, C(=O)NH₂, C(=O)NH $(CH_3), C(=O)N(CH_3)_2, C(=S)NH_2, C(=S)NH(CH_3),$ $C(=S)N(CH_3)_2$, SO_2NH_2 , $SO_2NH(CH_3)$, SO_2 $N(CH_3)_2$, C_1 - C_6 alkyl, C_1 - C_6 haloalkyl, C_3 - C_6 cycloalkyl, C_2 - C_6 alkenyl, C_2 - C_6 haloalkenyl, C_2 - C_6 alkynyl, C_2 - C_6 haloalkynyl, C_1 - C_6 alkoxy, C_1 - C_6 haloalkoxy, C_3 - C_6 alkenyloxy, C_3 - C_6 haloalkenyloxy, C₃-C₆ alkynyloxy, C₃-C₆ cycloalkoxy, C₃-C₆ halocycloalkoxy, C₁-C₆ alkylthio, C₁-C₆ haloalkylthio, C₁-C₆ alkylsulfinyl, C₁-C₆ haloalkylsulfinyl, C₁-C₆ alkylsulfonyl and C₁-C₆ haloalkylsulfonyl;

R^{50'} is selected from the group consisting of hydrogen,

fluorine, C_1 - C_4 alkyl, C_1 - C_4 haloalkyl; $R^{51'}$, $R^{52'}$, $R^{53'}$, $R^{54'}$, $R^{55'}$ and $R^{56'}$ are selected, independent dently of each other, from the group consisting of hydrogen, fluorine, C₁-C₄ alkyl, C₁-C₄ haloalkyl, C₂-C₄ alkoxy and C_1 - C_4 alkylthio;

R⁵⁷, R⁵⁸, R⁵⁹ and R⁶⁰ are selected, independently of each other, from the group consisting of hydrogen, halogen, CN, NO₂, OH, SH, CHO, C(=O)NH₂, C(=O)NH $(CH_3), C(=O)N(CH_3)_2, C(=S)NH_2, C(=S)NH(CH_3),$ haloalkoxy, phenyl, C₃-C₆ alkenyloxy, C₃-C₆ haloalkenyloxy, C₃-C₆ alkynyloxy, C₃-C₆ cycloalkoxy, C₃-C₆ halocycloalkoxy, benzyloxy, C₁-C₆ alkylthio, C₁-C₆ haloalkylthio, C₁-C₆ alkylsulfinyl, C₁-C₆ haloalkylsulfinyl, C_1 - C_6 alkylsulfonyl and C_1 - C_6 haloalkylsulfonyl; provided that at least one of R^{57} , R^{58} , R^{59} and R^{60} is not

 R^{61} and R^{62} are selected independently of each other from the group consisting of hydrogen, fluorine, cyano, C₁-C₄ alkyl and C_1 - C_4 haloalkyl; $R^{63'}$, $R^{64'}$, $R^{65'}$, $R^{66'}$, $R^{67'}$ and $R^{68'}$ are selected indepen-

dently of each other from the group consisting of hydrogen, halogen, hydroxy, cyano, C1-C4 alkyl, C1-C4 haloalkyl, C₁-C₄ alkoxy, C₁-C₄ haloalkoxy and C₁-C₄ alkylthio;

R⁶⁹ is selected from hydrogen, C₁-C₄ alkyl, C₃-C₄ alkenyl and C_1 - C_4 alkylcarboxy;

n is 0 or 1;

p and q are independently selected from 0 and 1;

r, s and t are independently selected from 0 and 1.

4. A fungicidal composition according to claim 1, wherein component A) is a compound of formula (I) wherein R₁ and 50 R₂ are each C₁-C₄ alkyl;

R₃ represents hydrogen, halogen, cyano, C₁-C₄ alkyl, C₁-C₄ haloalkyl, C₂-C₄ alkenyl, C₂-C₄ alkynyl, C₁-C₄ alkoxy, C_3 - C_6 cycloalkyl, C_1 - C_4 alkylthio, C_1 - C_4 alkylsulfinyl or C_1 - C_4 alkylsulfonyl;

R₄ is selected from methyl, ethyl, methoxy, fluorine and chlorine;

 R_6 is hydrogen;

 R_7 is hydrogen or C_1 - C_4 alkyl.

5. A fungicidal composition according to claim 1, wherein 7 and R^{38} are selected independently of each other from 60 component A) is a compound of formula (I) wherein R_1 and R₂ are each independently selected from methyl, ethyl and isopropyl;

R₃ represents hydrogen, halogen, C₁-C₄ alkyl, C₁-C₄ haloalkyl, cyclopropyl, ethynyl or C₁-C₄ alkoxy;

R₄ is selected from methyl, methoxy, fluorine and chlorine; R₆ is hydrogen;

R₇ is hydrogen.

- 6. A fungicidal composition according to claim 1, wherein component A) is a compound of formula (I) wherein
 - R_1 is methyl;
 - R_2 is ethyl;
 - R₃ is selected from hydrogen, bromine, iodine, methyl, 5 CHF₂, cyclopropyl, ethynyl and methoxy;
 - R_{4} is methyl;
 - R₆ is hydrogen;
 - R_7 is hydrogen.
- 7. A fungicidal composition according to claim 3, wherein 10 component A) is a compound of formula (I) wherein R₅ is selected from G¹, G², G⁵, G⁶-G⁷, G⁸, G⁹, G¹⁰-G¹¹, G¹², G¹⁴, G^{15} and G^{16} .
- 8. A fungicidal composition according to claim 3, wherein component A) is a compound of formula (I) wherein R₅ is 15 selected from G^2 , G^5 , G^6 - G^7 , G^8 , G^9 , G^{10} - \mathring{G}^{11} , G^{14} and \mathring{G}^{16} .
- 9. A fungicidal composition according to claim 3, wherein component A) is a compound of formula (I) wherein R₅ is selected from G², G⁵, G⁸ and G¹⁰-G¹¹.
- 10. A fungicidal composition according to claim 3, 20 wherein component A) is a compound of formula (I) wherein G¹ is a C₉-C₁₀ fused bicyclic ring system which may be saturated or comprise one carbon-carbon double bond and is optionally substituted by one or more groups independently selected from C₁-C₄ alkyl, fluorine, methoxy and C₁-C₄ fluo- 25 roalkyl;
 - G² is C₃-C₆ cycloalkenyl, which is optionally substituted by one or more groups independently selected from halogen, ethyl, n-propyl, iso-propyl, n-butyl, iso-butyl, sec-butyl, tert-butyl, n-pentyl, —CH(CH₃)—CH₂— CH₂—CH₃, —CH—CH(CH₃)—CH₂—CH₃, —CH₂- CH_2 — $CH(CH_3)$ — CH_3 , $-CH_2-CH_2-CH(CH_3)_2$, —CH(CH₃)—CH(CH₃)₂, C₂-C₆ haloalkyl, C₁-C₆ alkoxy and C₁-C₆ alkylthio;
 - G³ is phenyl, which is optionally substituted by one or 35 more groups independently selected from hydroxyl, C₁-C₄ alkyl, C₁-C₄ fluoroalkyl, C₁-C₄ alkoxy and halo-
 - G⁴ is C₅-C₆ cycloalkyl which is optionally substituted by one or more groups independently selected from 40 hydroxyl, C₁-C₄ alkyl, C₂-C₄ alkenyl, C₂-C₄ alkynyl, C₁-C₄ alkoxy, halogen and cyano, wherein the alkyl groups are optionally substituted by one or more halo-
 - G^5 is C_3 - C_7 cycloalkyl, which is substituted by one or more 45 groups independently selected from ethyl, n-propyl, isopropyl, n-butyl, iso-butyl, sec-butyl, tert-butyl, n-pentyl, $-CH(CH_3)$ $-CH_2$ $-CH_2$ $-CH_3$, -CH $-CH(CH_3)$ - $-CH_2-CH_2-CH(CH_3)-CH_3$, $-CH_2-CH_2-CH(CH_3)_2$, $-CH(CH_3)-CH(CH_3)_2$, 50 C2-C6 haloalkyl, C1-C6 alkoxy, C3-C4-alkenyloxy, phenoxy and C₁-C₆ alkylthio;
 - G⁶ is phenyl, which must be substituted by at least one fluorine and is optionally further substituted by one or more groups independently selected from halogen, CN, 55 NO₂, OH, SH, CHO, C(=O)NH₂, C(=O)NH(CH₃), $C(=S)NH_2$ $C(=S)NH(CH_3),$ $C(=O)N(CH_3)_2$ SO₂NH(CH₃), SO₂ alkynyl, $\mathrm{C_1\text{-}C_6}$ alkoxy, $\mathrm{C_1\text{-}C_6}$ haloalkoxy, $\mathrm{C_3\text{-}C_6}$ alkenyloxy, C₃-C₆ alkynyloxy, C₁-C₆ alkylthio, C₁-C₆ alkylsulfinyl and C₁-C₆ alkylsulfonyl;
 - G¹⁰ is phenyl, which is optionally substituted by one or more groups independently selected from halogen, CN, OH, SH, CHO, methyl, ethyl, n-propyl, iso-propyl, CH₂F, CHF₂, CF₃, CHF—CH₃, CF₂—CH₃, CF₂—CF₃,

- cyclopropyl, CH=CH2, C(CH3)=CH2, CH=CH (CH_3) , $C(CH_3)$ = $CH(CH_3)$, CH= $C(CH_3)$, $C(CH_3)$ =C(CH₃)₂, CH=CF₂, CH=CCl₂, C=CH, methoxy, ethoxy, iso-propyloxy, phenyl, OCHF₂, OCH₂-C=CH, OCH(CH₃)-C=CH, SCH₃, SCH₂CH₃, $S(=O)CH_3$, $S(=O)CH_2CH_3$, $S(=O)_2CH_3$ and $S(=O)_2CH_2CH_3;$
- G11 is methylene substituted by at least one group independently selected from C₁-C₄ alkyl, C₁-C₄ haloalkyl, C_1 - C_4 alkoxy and C_1 - C_4 haloalkoxy;
- G^{13} is a C_8 - C_{11} spirobicyclic system containing 0, 1 or 2 O or N atoms, wherein there are no adjacent O atoms, which is optionally substituted by one or more groups independently selected from halogen, C1-C6 alkyl, C₁-C₆ haloalkyl, C₁-C₆ alkoxy, C₁-C₆ alkylthio and =O;
- $\ensuremath{\mathrm{G}^{17}}$ is a five- to six-membered monocyclic heteroaromatic ring system which can contain 1 to 4 members selected from the group consisting of N, N(R⁶⁹'), O and S, it not being possible for each ring system to contain -O—O—, —S—S— and —O—S— fragments, and it being possible for the five- to six-membered ring system to be itself mono- or polysubstituted by groups selected from the group consisting of halogen, CN, NO₂, OH, SH, CHO, C(=O)NH₂, C(=O)NH(CH₃), C(=O)N $(CH_3)_2$, $C(=S)NH_2$, $C(=S)NH(CH_3)$, $C(=S)NH(CH_3)_2$, SO_2NH_2 , $SO_2NH(CH_3)$, $SO_2N(CH_3)_2$, C_1 - C_6 alkyl, C_1 - C_6 haloalkyl, C_3 - C_6 cycloalkyl, C_2 - C_6 alkenyl, C2-C6 haloalkenyl, C2-C6 alkynyl, C2-C6 haloalkynyl, C_1 - C_6 alkoxy, C_1 - C_6 haloalkoxy, C_3 - C_6 alkenyloxy, C₃-C₆ haloalkenyloxy, C₃-C₆ alkynyloxy, C₃-C₆ cycloalkoxy, C₃-C₆ halocycloalkoxy, C₁-C₆ alkylthio, C_1 - C_6 haloalkylthio, C_1 - C_6 alkylsulfinyl, C_1 - C_6 haloalkylsulfinyl, C_1 - C_6 alkylsulfonyl and C_1 - C_6 haloalkylsulfonyl;
- R1' is selected from the group consisting of hydrogen, fluorine, C₁-C₄ alkyl and C₁-C₄ fluoroalkyl;
- R2', R3', R4' and R5' are selected, independently of each other, from the group consisting of hydrogen, fluorine, C_1 - C_4 alkyl, C_1 - C_4 haloalkyl, C_1 - C_4 alkoxy and C_1 - C_4 alkylthio;
- $R^{11'}$, $\tilde{R}^{12'}$, $R^{13'}$ and $R^{14'}$ are selected, independently of each other, from the group consisting of hydrogen, cyano, halogen, C₁-C₆ alkyl, C₁-C₆ haloalkyl, C₁-C₆ alkoxy
- and C_1 C_6 alkylthio; $R^{15'},\,R^{16'},\,R^{17'},\,R^{18'},\,R^{19'},\,R^{20'},\,R^{21'}$ and $R^{22'}$ are independent dently selected from the group consisting of hydrogen, halogen, methyl, ethyl, isopropyl, CH₂F, CHF₂, CF₃,
- CHF—CH₃, CF₂—CH₃ and CF₂CF₃; $R^{23'}$, $R^{24'}$ and $R^{25'}$ are independently selected from the group consisting of hydrogen, halogen, cyano, C1-C4 alkyl, $\mathrm{C}_1\text{-}\mathrm{C}_4$ haloalkyl, $\mathrm{C}_1\text{-}\mathrm{C}_4$ alkoxy, $\mathrm{C}_3\text{-}\mathrm{C}_6$ cycloalkyl,
- $\begin{array}{l} C_3 C_6 \text{ halocycloalkyl and } C_1 C_4 \text{ alkylthio}; \\ R^{26'} \text{ is } N OH, N O C_1 C_4 \text{ alkyl, } N O C_2 C_4 \text{ alkyl, } N O C_2 C_4 \text{ alkyl, } N O C_1 C_4 \text{ haloalkyl, } \end{array}$ N—O—C₂-C₄ haloalkenyl, N—O-benzyl, N—O-phenyl, N—O-halophenyl, O or $C(R^{36'})_2$; $R^{27'}, R^{28'}, R^{29'}, R^{30'}, R^{31'}, R^{32'}, R^{33'}, R^{34'}$ and $R^{35'}$ are each
- independently selected from the group consisting of hydrogen, hydroxyl, C1-C4 alkyl, C1-C4 alkoxy and halogen;
- and R^{29'} together with the two carbon atoms to which they are attached form a double bond;
- each R36' is independently selected from hydrogen, halo-
- gen and $C_1\text{-}C_4$ alkyl; $R^{37'},\,R^{38'},\,R^{39'},\,R^{40'},\,R^{41'},\,R^{42'},\,R^{43'}$ and $R^{44'}$ are selected independently of each other from a group consisting of

60

hydrogen, halogen, methyl, ethyl, isopropyl, monofluoromethyl, polyfluoromethyl, monofluoroethyl, and polyfluoroethyl:

R⁴⁵', R⁴⁶', R⁴⁷', R⁴⁸' and R⁴⁹' are independently selected from the group consisting of hydrogen, fluorine, chlorine, bromine, iodine, methyl, ethyl, isopropyl, cyclopropyl, C = CH, $CH = CH_2$, $C(CH_3) = CH_2$, CF_3 , CHF_2 , CH₂F, —CHF—CH₃, —CF₂—CH₃, methoxy, ethoxy, difluoromethoxy, trifluoromethoxy, methlythio, methylsulfinyl and methylsulfonyl;

R^{50'} is selected from the group consisting of hydrogen, fluorine, C₁-C₄ alkyl, C₁-C₄ haloalkyl;

R⁵¹', R⁵²', R⁵³', R⁵⁴', R⁵⁵' and R⁵⁶' are selected, independently of each other, from the group consisting of hydrogen, fluorine, C₁-C₄ alkyl, C₁-C₄ haloalkyl, C₂-C₄ alkoxy and C₁-C₄ haloalkoxy;

 $R^{57'}, R^{58'}, R^{59'}$ and $R^{60'}$ are selected, independently of each other, from the group consisting of hydrogen, cyano, halogen, C_1 - C_6 alkyl and C_1 - C_6 haloalkyl;

provided that at least one of R⁵⁷, R⁵⁸, R⁵⁹ and R⁶⁰ is not hydrogen;

 R^{61} and R^{62} are selected independently of each other from the group consisting of hydrogen, fluorine, cyano, C_1 - C_4

alkyl and C_1 - C_4 haloalkyl; $R^{63'}$, $R^{64'}$, $R^{65'}$, $R^{66'}$, $R^{67'}$ and $R^{68'}$ are selected independent dently of each other from the group consisting of hydrogen, fluorine, cyano, C₁-C₄ alkyl, C₁-C₄ haloalkyl, C₁-C₄ alkoxy and C₁-C₄ haloalkoxy;

 R^{69} is selected from hydrogen, C_1 - C_4 alkyl and C_1 - C_4 30 alkylcarboxy;

n is 0 or 1;

p and q are independently selected from 0 and 1; r and s are 0 and t is 1 or 0.

- 11. A fungicidal composition according to claim 3, 35 wherein component A) is a compound of formula (I) wherein G¹ is a saturated C₁₀ fused bicyclic ring system which is optionally substituted by one or more groups independently selected from C₁-C₄ alkyl, fluorine, methoxy and C₁-C₄ fluo-
 - G² is a C₅-C₆ cycloalkenyl group optionally substituted by one or more fluorine atoms;

G³ is phenyl, which is optionally substituted by one or more groups independently selected from hydroxyl, C₁-C₄ alkyl, CHF₂, CF₃, C₁-C₄ alkoxy and halogen;

 G^4 is C_5 - C_6 cycloalkyl which is optionally substituted by one or more groups independently selected from hydroxyl, C₁-C₄ alkyl, C₂-C₄ alkenyl, C₂-C₄ alkynyl, C_1 - C_4 alkoxy and halogen;

 G^5 is C_5 - C_6 cycloalkyl, which is substituted by one or more 50 groups independently selected from ethyl, n-propyl, isopropyl, n-butyl, iso-butyl, sec-butyl, tert-butyl, n-pentyl, -CH(CH₃)--CH₂--CH₂--CH₃, --CH---CH(CH₃)--H₂--CH₃, --CH₂---CH₂--CH(CH₃)--CH₃, CH₂—CH₃, $-CH_2-CH_2-CH(CH_3)_2$, $-CH(CH_3)-CH(CH_3)_2$ 55 and C_2 - C_6 haloalkyl;

G⁶ is phenyl, which must be substituted by at least one fluorine and is optionally further substituted by one or more groups independently selected from halogen, CN, C_1 - C_4 alkyl, C_1 - C_4 haloalkyl and C_1 - C_4 alkoxy;

G⁷ is methylene;

G¹⁰ is phenyl, which is optionally substituted by one or more groups independently selected from hydrogen, halogen, CN, OH, methyl, ethyl, n-propyl, iso-propyl, CH₂F, CHF₂, CF₃, CHF—CH₃, CF₂—CH₃, CF₂—CF₃, 65 $CH=CH_2$, $C(CH_3)=CH_2$, $CH=CH(CH_3)$, $C(CH_3)$ =CH(CH₃), $CH = C(CH_3)_2$ $C(CH_3) = C(CH_3)_2$

CH=CF2, CH=CCl2, C=CH, methoxy, ethoxy, isopropyloxy, phenyl and OCHF2;

G¹¹ is methylene substituted by at least one group independently selected from C₁-C₄ alkyl, C₁-C₄ haloalkyl and C_1 - C_4 alkoxy;

 G^{13} is a C_8 - C_{11} spirobicyclic system containing 0, 1 or 2 O or N atoms, wherein there are no adjacent O atoms, which is optionally substituted by one or more groups independently selected from halogen, C1-C6 alkyl, C₁-C₆ haloalkyl, C₁-C₆ alkoxy, C₁-C₆ alkylthio and

G¹⁷ is a five- to six-membered monocyclic heteroaromatic ring system which can contain 1 to 4 members selected from the group consisting of N, N(R⁶⁹), O and S it not being possible for each ring system to contain —O—O—, —S—S— and —O—S— fragments, and it being possible for the five- to six-membered ring system to be itself mono- or polysubstituted by groups selected from the group consisting of halogen, CN, C₁-C₄ alkyl, C₁-C₄ haloalkyl, C₁-C₄ alkoxy, C₁-C₄ haloalkoxy, phenyl or benzyl, wherein the phenyl or benzyl are optionally substituted by halogen, CN, C₁-C₄ alkyl or C₁-C₄ haloalkyl;

R¹ is selected from the group consisting of hydrogen,

fluorine, methyl, CH_2F and CF_3 ; $R^{2'}$, $R^{3'}$, $R^{4'}$ and $R^{5'}$ are selected, independently of each other, from the group consisting of hydrogen, fluorine, methyl, CH₂F, CF₃ and methoxy;

R¹¹, R¹², R¹³ and R¹⁴ are selected, independently of each other, from the group consisting of hydrogen, halogen,

cyano, C_1 - C_4 alkyl, CHF_2 , CF_3 and C_1 - C_4 alkoxy; $R^{15'}, R^{16'}, R^{17'}, R^{18'}, R^{19'}, R^{20'}, R^{21'}$ and $R^{22'}$ are each independently selected from hydrogen, fluorine, methyl, ethyl, CH₂F, CHF₂, CF₃ and isopropyl;

R^{23'}, R^{24'} and R^{25'} are independently selected from the group consisting of hydrogen, methyl, fluorine, chlorine, bromine, ethyl, CH₂F, CHF₂, CF₃ and isopropyl;

R^{26'} is selected from the group consisting of N—OH, N—O— C₁-C₄ alkyl, N—O— C₂-C₄ alkenyl, N—O— C₂-C₄ alkynyl, N—O—C₁-C₄ haloalkyl, N—O—C₂-C₄ haloalkenyl, N—O-benzyl, N—O-phenyl, N—O-

halophenyl, O, and $C(R^{36'})$; $R^{27'}, R^{28'}, R^{29'}, R^{30'}, R^{31'}, R^{32'}, R^{33'}, R^{34'}$ and $R^{35'}$ are each independently selected from the group consisting of

hydrogen, C_1 - C_4 alkyl and halogen; or R^{27} and R^{28} together with the two carbon atoms to which they are attached form a double bond;

each R^{36'} is independently selected from hydrogen, halo-

gen and C_1 - C_4 alkyl; $R^{37'},\,R^{38'},\,R^{39'},\,R^{40'},\,R^{41'},\,R^{42'},\,R^{43'}$ and $R^{44'}$ are independent dently selected from the group consisting of hydrogen, fluorine, methyl and trifluoromethyl;

R^{45'}, R^{46'}, R^{47'}, R^{48'} and R^{49'} are independently selected from the group consisting of hydrogen, fluorine, chlorine, bromine, iodine, methyl, ethyl, isopropyl, cyclopropyl, C = CH, $CH = CH_2$, $C(CH_3) = CH_2$, CF_3 , CHF_2 , CH₂F, —CHF—CH₃, —CF₂—CH₃, methoxy, difluoromethoxy, trifluoromethoxy, ethoxy, methlythio, methylsulfinyl and methylsulfonyl;

 $R^{50'}, R^{51'}, R^{52'}, R^{53'}, R^{54'}, R^{55'}$ and $R^{56'}$ are selected, independently of each other, from the group consisting of hydrogen, fluorine, methyl, CH₂F and CF₃;

R^{57'}, R^{58'}, R^{59'} and R^{60'} are selected, independently of each other, from the group consisting of hydrogen, halogen, cyano, C_1 - C_4 alkyl, CHF_2 and CF_3 ; provided that at least one of $R^{57'}$, $R^{58'}$, $R^{59'}$ and $R^{60'}$ is not

hydrogen;

R^{61'} and R^{62'} are selected independently of each other from the group consisting of hydrogen, fluorine, methyl, ethyl, CHF₂ and CF₃;

 $R^{62'}$, $R^{63'}$, $R^{64'}$, $R^{65'}$, $R^{66'}$, $R^{67'}$ and $R^{68'}$ are selected independently of each other from the group consisting of 5 hydrogen, fluoro, methyl, ethyl, methoxy, difluoromethoxy, trifluoromethoxy, CHF2 and CF3;

 R^{69} is selected from hydrogen and C_1 - C_4 alkyl;

n is 0 or 1;

p and q are independently selected from 0 and 1; r and s are 0 and t is 1 or 0.

12. A fungicidal composition according to claim 3, wherein component A) is a compound of formula (I) wherein G^1 is a saturated C_{10} fused bicyclic ring system;

 G^2 is a C_5 - C_6 cycloalkenyl group;

G³ is phenyl;

G⁴ is cyclohexyl or cyclopentyl;

G⁵ is C₆ cycloalkyl, which is optionally substituted by one or more groups independently selected from ethyl, n-propyl, iso-propyl, n-butyl, iso-butyl, sec-butyl, tert- 20 butyl, n-pentyl, $-CH(CH_3)-CH_2-CH_2-CH_3$ -CH-CH(CH $_3)$ -CH $_2$ -CH $_3$, -CH $_2$ -CH $_2$ -CH $_2$ -CH (CH_3) — CH_3 , — CH_2 — CH_2 — $CH(CH_3)_2$ and —CH(CH₃)—CH(CH₃)₂;

G⁶ is phenyl, which must be substituted by at least one 25 fluorine and is optionally further substituted by one or more methyl, bromine, iodine or chlorine;

G⁷ is methylene;

G¹⁰ is phenyl, which is optionally substituted by one or more groups independently selected from halogen, CN, 30 methyl, ethyl, n-propyl, iso-propyl, ethenyl, methoxy, ethoxy, iso-propyloxy, phenyl, CHF₂, CF₃, CHF—CH₃ and OCHF₂;

G¹¹ is methylene substituted by at least one group independently selected from methyl, CF3 and ethyl;

 G^{13} is a C_8 - C_{11} spirobicyclic system containing 0, 1 or 2 O or N atoms, wherein there are no adjacent O atoms, which is optionally substituted by one or more groups independently selected from halogen, C1-C4 alkyl, C_1 - C_4 alkoxy and \Longrightarrow O;

40 G¹⁷ is a five- to six-membered monocyclic heteroaromatic ring system which can contain 1 or 2 members selected from the group consisting of N, O and S, it not being possible for each ring system to contain -O-O-, S—S— and —O—S— fragments, and it being pos- 45 sible for the five- to six-membered ring system to be itself mono- or polysubstituted by groups selected from the group consisting of halogen, CN, C₁-C₄ alkyl, C₁-C₄ haloalkyl, C₁-C₄ alkoxy, C₁-C₄ haloalkoxy, phenyl or fluorophenyl;

 $R^{1'}, R^{2'}, \overset{?}{R}^{3'}, \overset{?}{R}^{4'}$ and $R^{5'}$ are each hydrogen; $R^{11'}, R^{12'}, R^{13'}$ and $R^{14'}$ are selected, independently of each other, from the group consisting of hydrogen, halogen,

cyano, C_1 - C_4 alkyl and C_1 - C_4 alkoxy; $R^{15'}, R^{16'}, R^{17'}, R^{18'}, R^{19'}, R^{20'}, R^{21'}, R^{22'}, R^{23'}, R^{24'}$ and $R^{25'}$ 55 are each independently selected from hydrogen, methyl, ethyl and isopropyl;

R^{26'} is N—OH, N—O—C₁-C₄ alkyl, N—O—C₂-C₄ alkenyl, N—O—C₂-C₄ alkynyl, N—O—C₁-C₄ haloalkyl, N—O—C₂-C₄ haloalkenyl, N—O-benzyl, N—O-phe- 60

nyl, N—O-halophenyl, O and $C(R^{36'})$; $R^{27'}, R^{28'}, R^{29'}, R^{30'}, R^{31'}, R^{32'}, R^{33'}, R^{34'}$ and R^{35} are each hydrogen or methyl;

or $R^{27'}$ and $R^{28'}$ together with the two carbon atoms to which they are attached form a double bond;

each R36' is independently selected from hydrogen, halogen and C₁-C₄ alkyl;

R³⁷′, R³⁸′, R³⁹′, R⁴⁰′, R⁴¹′, R⁴²′, R⁴³′ and R⁴⁴′ are hydrogen; R^{45'}, R^{46'}, R^{47'}, R^{48'} and R^{49'} are independently selected from the group consisting of hydrogen, fluorine, chlorine, methyl, CF₃, CHF₂, CH₂F, methoxy, difluoromethoxy and trifluoromethoxy;

R^{53'}, R^{51'}, R^{52'}, R^{53'}, R^{54'}, R^{55'} and R^{56'} are each hydrogen; R⁵⁷, R⁵⁸, R⁵⁹ and R⁶⁰ are selected, independently of each other, from the group consisting of hydrogen and halo-

provided that at least one of R⁵⁷, R⁵⁸, R⁵⁹ and R⁶⁰ is not

R⁶¹, R⁶², R⁶³, R⁶⁴, R⁶⁵, R⁶⁶, R⁶⁷ and R⁶⁸ are hydrogen; R⁶⁹ is hydrogen;

n is 0 or 1;

p and q are independently selected from 0 and 1; r, s and t are each 0.

13. A compound according to formula (IV)

$$\begin{array}{c} R_{100} \\ \\ R_{3} \end{array} \begin{array}{c} N \\ \\ R_{7} \end{array} \begin{array}{c} R_{4} \\ \\ R_{2} \end{array} \begin{array}{c} R_{1} \\ \\ R_{2} \end{array}$$

wherein R_{100} is halogen, SH, C_1 - C_4 alkylthio, C_1 - C_4 alkysulfinyl, C_1 - C_4 alkylsulfonyl;

 R_1 and R_2 are each independently selected from hydrogen, C₁-C₄ alkyl, C₃-C₄ alkenyl, C₃-C₄ alkynyl, (R₁₀)carbonyl and (R₁₀)oxycarbonyl;

or R₁ and R₂ together with the nitrogen atom to which the are attached form a 5- or 6 membered cyclic group which may be saturated or unsaturated and may contain a further heteroatom selected from S or O;

R³ represents hydrogen, halogen, cyano, nitro, mercapto, hydroxy, $-C(=S)NH_2$, $-SF_5$, C_1-C_6 alkyl, C_1-C_6 haloalkyl, C_2 - C_6 alkenyl, C_2 - C_6 haloalkenyl, C_2 - C_6 alkynyl, C_2 - C_6 haloalkynyl, C_1 - C_6 alkoxy, C_1 - C_6 haloalkoxy, C₃-C₆cycloalkyl amino, C₁-C₂ alkylamino, di(C₁-C₆alkyl)amino, a 5-membered heterocycle containing 1-4 nitrogen atoms, piperidino, morpholino, thiomorpholino, formyl, hydroxycarbonyl, C2-C7 alkoxycarbonyl, C2-C7 haloalkoxycarbonyl, C4-C7 alkenyloxycarbonyl, C_4 - C_7 haloalkenyloxycarbonyl, C_2 - C_7 alkylcarbonyl, C_2 - C_7 haloalkylcarbonyl, C₁-C₆alkylthio, C₁-C₆alkylsulfinyl, C_1 - C_6 alkylsulfonyl, C_1 - C_6 haloalkylthio, C_1 - C_6 haloalkylsulfinyl, C_1 - C_6 haloalkylsulfonyl, C_1 - C_6 hydroxyalkyl, phenyl or benzyl wherein the phenyl and benzyl are optionally substituted by one or more groups independently selected from the group consisting of halogen, cyano, hydroxy, mercapto, amino, C₁-C₆ alkyl, C₁-C₆ haloalkyl, C₁-C₆alkoxy, C₁-C₆ haloalkoxy, C₁-C₆alkylthio, C₁-C₆alkylsulfinyl C_1 - C_6 alkylsulfonyl;

R₄ represents hydrogen, halogen, cyano, amino, C₁-C₄ alkyl, C_1 - C_4 haloalkyl, C_3 - C_6 cycloalkyl, C_2 - C_4 alkenyl, C_2 - C_4 alkoxy, C_1 - C_4 haloalkoxy, C_1 - C_4 alkylthio, C₁-C₄ alkylsulfinyl, C₁-C₄ alkylsulfonyl, methylamino or dimethylamino;

R₆ is selected from hydrogen and SH; and

 R_7 is hydrogen, halogen or C_1 - C_4 alkyl.

14. A method of controlling phytopathogenic diseases on useful plants or on propagation material thereof, which com-

prises applying to the useful plants, the locus thereof or propagation material thereof a combination of components A) and B) in a synergistically effective amount according to claim 1 together with an inert carrier, and optionally an adjuvant

- 15. A fungicidal composition, comprising a combination of components A) and B) according to claim 1 together with an inert carrier, and optionally an adjuvant, wherein the weight ratio of A) to B) is between 100:1 and 1:6000.
- 16. A method of protecting natural substances of plant 10 origin, which have been taken from their natural life cycle, and/or their processed forms, which comprises applying to said natural substances of plant and/or animal origin or their processed forms a combination of components A) and B) according to claim 1 in a synergistically effective amount. 15

* * * * *